
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163

A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Research article

BinCodex: A comprehensive and multi-level dataset for evaluating binary
code similarity detection techniques
Peihua Zhang a,b, Chenggang Wu a,b,c, Zhe Wang a,c,∗

a SKLP, Institute of Computing Technology, China
b UCAS, China
c Zhongguancun Laboratory, China

A R T I C L E I N F O

Keywords:
Dataset
Binary code similarity detection
Compiler optimization
Code obfuscation

A B S T R A C T

The binary code similarity detection (BCSD) technique can quantitatively measure the differences between two
given binaries and give matching results at predefined granularity (e.g., function), and has been widely used
in multiple scenarios including software vulnerability search, security patch analysis, malware detection, code
clone detection, etc. With the help of deep learning, the BCSD techniques have achieved high accuracy in their
evaluation. However, on the one hand, their high accuracy has become indistinguishable due to the lack of a
standard dataset, thus being unable to reveal their abilities. On the other hand, since binary code can be easily
changed, it is essential to gain a holistic understanding of the underlying transformations including default
optimization options, non-default optimization options, and commonly used code obfuscations, thus assessing
their impact on the accuracy and adaptability of the BCSD technique. This paper presents our observations
regarding the diversity of BCSD datasets and proposes a comprehensive dataset for the BCSD technique. We
employ and present detailed evaluation results of various BCSD works, applying different classifications for
different types of BCSD tasks, including pure function pairing and vulnerable code detection. Our results show
that most BCSD works are capable of adopting default compiler options but are unsatisfactory when facing
non-default compiler options and code obfuscation. We take a layered perspective on the BCSD task and point
to opportunities for future optimizations in the technologies we consider.
1. Introduction

The widespread presence of binary code across diverse domains, in-
cluding traditional PC software, emerging IoT device firmware [1], and
malicious software, highlights the criticality of conducting research ex-
clusively focused on binary code to effectively address software security
concerns. In recent years, the binary code similarity detection (BCSD)
technique [2–28] has garnered substantial attention and proven its
versatility across diverse fields, including vulnerability discovery, mal-
ware detection, software plagiarism detection, patch analysis, software
supply chain analysis, etc.

With the continuous advancements in machine learning, especially
deep learning, learning-based methods have emerged as a prominent
approach in mainstream BCSD tools [9,10,12,14,18,26,28,29]. These
methods harness the power of neural network architectures and tech-
niques to extract intricate patterns and representations from binary
code, resulting in significant improvements in accuracy. By leveraging

∗ Corresponding author at: SKLP, Institute of Computing Technology, China.
E-mail address: wangzhe12@ict.ac.cn (Z. Wang).

1 ‘‘Bin’’ signifies the focus on analyzing binary code, while ‘‘Codex’’ conveys the idea of a comprehensive collection of code samples.

large-scale training datasets and sophisticated neural network architec-
tures, learning-based BCSD techniques have achieved state-of-the-art
accuracy in various tasks.

However, recent BCSD works have faced a challenge in distinguish-
ing their capabilities and accuracy due to the absence of a standard
dataset. Our study (detailed in Section 2.3) reveals that 22 BCSD works,
which were conducted in the past decade and published on top venues,
utilized different datasets. Consequently, it has become difficult to
assess the true effectiveness of these methods, hindering the ability to
make informed decisions and impeding progress in the field. Given the
broad range of applications and the growing number of works in the
BCSD field, the establishment of a standardized dataset is crucial.

To address this issue, we propose a standardized BCSD dataset
dubbed as BinCodex.1 This dataset aims to evaluate BCSD works in
diverse scenarios, enabling researchers to compare and assess different
techniques more effectively. Additionally, a standardized dataset would
facilitate the validation of new methods, foster collaboration among
researchers, and contribute to the overall progress of BCSD.
vailable online 21 May 2024
772-4859/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2024.100163
Received 26 February 2024; Received in revised form 23 April 2024; Accepted 7 M
KeAi Communications Co. Ltd. This is an open access article under the CC

ay 2024

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:wangzhe12@ict.ac.cn
https://doi.org/10.1016/j.tbench.2024.100163
https://doi.org/10.1016/j.tbench.2024.100163
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100163&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
We first thoroughly inspected all possible change points of the bi-
nary code and divided them into 4 groups: different platforms (e.g., x86
and arm), different compilers (e.g., GCC and Clang), different com-
piler options (including default and non-default), and different code
obfuscation techniques.

Among them, compiler optimization options play a vital role in
shaping the structure of binary code, resulting in noticeable differences.
Previous studies have identified default options (e.g., O0/1/2/3) as a
critical challenge in binary diffing [28,30]. Additionally, apart from
default optimization levels, non-default options can also change binary
code significantly [31] but are challenging to exhaustively analyze due
to their large combination space, which encourages BinCodex to explore.
Lastly, code obfuscation techniques [32–38] can alter code to modify
binary characteristics, posing potential challenges to BCSD techniques.
Recent work [39] has identified the impact of inter-procedural obfus-
cation on BCSD techniques, but its comprehensive evaluation is yet to
be fully explored, which also motivates the BinCodex.

It is non-trivial to construct a comprehensive dataset for the BCSD
technique due to the challenges posed by program diversity, efficiency,
and measurement diversity. For example, (1) To balance the dataset
size with the program diversity, choosing which programs is a problem;
(2) Since the binary can be easily changed from several aspects, the
enumeration of all possible change point combinations is impossible
because of the large searching space. (3) BCSD tools differ in the
granularity of their features and the representation of those features.
How to normalize these disparities without deducing their accuracy is
challenging.

To address the first challenge, we create the dataset with careful
consideration of several factors, including a large amount of code
(over 10 million lines of code), the representation of different binary
code types (e.g., system software, compiler, interpreters, commonly
used libraries, firmware, and typical vulnerable code), the diversity of
code samples, varying levels of similarity, and different granularity of
similarity detection tasks (e.g., function level and basic block level).

To tackle the second challenge, we aim to reduce the searching
space in several directions. Firstly, we select default options among
different compilers, which helps eliminate unnecessary variations. Sec-
ondly, we utilize a search-based compiler tool to explore the non-
default options within a single compiler, avoiding redundant evalu-
ations. Lastly, we choose a commonly used optimization level as a
baseline to evaluate code obfuscation techniques, which reduces the
number of obfuscated binaries while still capturing their impact.

To overcome disparities in evaluation metrics, we addressed the
third challenge by normalizing features and using a standardized dis-
tance measurement: precision ratio. By abandoning different metrics
from various BCSD tools, we ensure consistency in the evaluation
process, enabling fair comparisons and a more reliable assessment of
effectiveness.

To achieve a more precise evaluation of BCSD tools, we developed
BinCodex as a multi-level dataset incorporating various code trans-
formation levels instead of merging all binaries into a single pool.
This granular evaluation enables a more detailed understanding of the
effectiveness of BCSD tools in different scenarios.

BinCodex is implemented and evaluated on the Linux system. Eight
state-of-the-art binary diffing tools (Diemph [29], OPTango [40], jTrans
[28], Asm2Vec [12], Safe [41], DeepBinDiff [10], VulSeeker [14], and
BinDiff [42]) are evaluated. The results cover various BCSD tasks,
including pure function pairing and vulnerable code detection, and
employ different classifications for different types of tasks. The results
highlight that most BCSD works perform well when default compiler
options are used but face challenges with non-default options. Addi-
tionally, while many BCSD tools demonstrate adaptability to intra-
procedural code obfuscation, they struggle with inter-procedural obfus-
cation techniques. The evaluation provides a deep understanding of the
current state of BCSD works, identifies the necessity of a standardized
BCSD dataset, and points to opportunities for future optimizations in
the field.
2

Fig. 1. The overall process of binary code similarity detection.

Our contributions can be summarized as follows:

• A deep understanding of current BCSD works. The paper is the
first to provide a comprehensive summary of BCSD works based
on their dataset characteristics. This understanding highlights the
need for a standardized BCSD dataset.

• A comprehensive BCSD dataset. We present a BCSD dataset and
propose three methods to enhance its comprehensiveness. These
methods include dataset selection, searching space reduction,
and metrics normalization. They ensure that the dataset includes
representative programs, diverse features, and standardized met-
rics. We also perform multi-level evaluations to gain a detailed
understanding of BCSD tools in different scenarios.

• New insights from implementation and evaluation. We eval-
uate BinCodex using eight state-of-the-art BCSD works, demon-
strating its effectiveness in accurately assessing and comparing
different methods. The insights gained from the evaluation con-
tribute to fair evaluations, foster innovation, and advance the
overall development of the BCSD field.

2. Background and motivation

2.1. Binary code similarity detection

Binary Code Similarity Detection (BCSD) is a technique used to
analyze and compare binary code to identify similarities between bi-
naries. It allows for quantitatively measuring differences and providing
matching results at predefined levels of granularity, typically at the
function level. As shown in Fig. 1, the process of BCSD typically begins
with the disassembly of binaries, where the binary code is converted
into assembly code, providing a representation that retains some se-
mantic information of the program. This disassembly step serves as
the foundation for most BCSD techniques. The workflow of BCSD
techniques can be divided into two stages: offline feature extraction
and online code search.

In the offline stage, tools extract features from binaries. Recent
research focuses on determining which features should be extracted
for effective BCSD. Based on the methods of the BCSD works, they
can be classified into two categories [10]: traditional approaches and
learning-based approaches.

• Traditional approaches extract low-level features from the binary
code, such as opcode histograms. For example, Genius [43] and
BinDiff [42] extract the number of string constants, numeric
contacts, and different kinds of instructions as the identity of
basic block and function, respectively. Besides, many works [6,7,
16,25,44–46] have tried to extract semantic-level features as the
identity of binary code, such as using I/O syntax to describe a
basic block [6].

• Learning-based approaches leverage machine learning techniques
to automatically learn discriminative features from the binary
code. Various models have been used to extract features and
learn representations that capture the underlying patterns in the
code. For example, Asm2Vec [12] regards the assembly language
as a special language, abstracts each element (e.g., opcode and
operands) in the instructions as tokens in the natural language,
and generates the representation of each token through training
and clustering.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.

a
c
c
a
d

t
a
t
i
t
u
e

u
t
a
s
w
T
g
s

2

b
b
e
e

f
T
u
t
f
o
t

c
a
c
o

]

Fig. 2. Binary generation process, change points included.

Both traditional and learning-based approaches have their strengths
nd limitations. Traditional approaches often struggle with complex
ode transformations. Learning-based approaches, on the other hand,
an adapt to diverse code representations and exhibit better robustness
gainst code variations. However, they require large amounts of labeled
ata for training and can be computationally intensive.

In the online stage, tools calculate the similarity between the ex-
racted features to identify matched pairs. This process can be seen as
search process, where the scale of the searching space is influenced by

he granularity of the defined features. For instance, if the granularity
s set at the function level, the searching space will be determined by
he number of functions in the binaries. On the other hand, if the gran-
larity is set at the basic block level, the searching space will be further
xpanded, considering the larger number of basic blocks in the code.

Additionally, the representation of the features impacts the method
sed for similarity calculation. When dealing with vector-related fea-
ures, distance metrics such as Euclidean distance or cosine similarity
re commonly employed. These metrics quantify the dissimilarity or
imilarity between feature vectors. On the other hand, when working
ith graph-related features, graph-matching methods come into play.
hese methods aim to find correspondences between nodes or sub-
raphs of the extracted features, taking into account both structural and
emantic similarities.

.2. Code transformation

The BCSD techniques meet challenges due to the ease with which
inary code can be altered. Even instructions with identical semantics
ut different registers can have different binary representations. To this
nd, we first summarized the binary code generation process in Fig. 2,
mphasizing the various points where changes can occur.

Source code transformations (Fig. 2 ①) primarily involve data ob-
uscation techniques that alter the format of data within a program.
hese transformations aim to prevent direct matching of data, often
sed to conceal sensitive information like private keys. However, in
he BCSD scenario, these transformations are usually excluded as BCSD
ocuses on binary code rather than specific data values. Therefore, data
bfuscation techniques targeting data format are not directly applicable
o BCSD.

Dynamic code rewriting approaches (Fig. 2 ③), inspired by the
oncept of packing [47,48], focus on encoding or encrypting code
s data. However, these techniques are also usually excluded in the
ontext of BCSD due to they can be automatically unpacked [49–51]
r be memory-dumped [52–55], and lose the transformation effect.

In contrast, compile-time transformations (Fig. 2 ②) focus on mod-
ifying the code during compilation without any further runtime modi-
fications. These transformations have a significant impact on the struc-
ture of the resulting binary, making them a key area of interest in BCSD
research. Compile-time transformations can manifest in several ways:

• Different compilers may implement the same optimization tech-
nique differently, leading to variations in the resulting binary
code.

• Compiler options, including both non-default and default op-
tions, can influence the generated binary code (detailed in Sec-
3

tion 2.2.1).
• Code obfuscations, which intentionally introduce complexity and
disguise code, can result in substantial differences in binary code
(detailed in Section 2.2.2).

2.2.1. Compiler optimization
Compiler optimization, which is originally used to improve the

software performance (e.g., function inline) or reduce the binary size
(e.g., dead-code elimination), has the potential to substantially modify
the binary code, thereby exerting a significant impact on its differences.
The binary code compiled from the same source code with different
optimizations can exhibit a remarkably distinct code layout. Therefore,
previous works have regarded compiler optimization as one of the key
challenges to address in the BCSD task. For example, both Zeek [30]
and jTrans [28] consider evaluating whether their methods can with-
stand the binary differences caused by different compiler optimization
levels (including O0/1/2/3 and Os) as an important setup.

Except for the default compiler options, which integrate several
optimization techniques, non-default optimization options also have a
large effect on changing the binary code. Recent works have found they
can expand the binary code difference significantly, which can be larger
than the difference between O0 and O3 [31,40].

2.2.2. Software obfuscation
Software obfuscation transforms the program without changing its

functionality to make it hard to analyze. There is an arms race between
software obfuscation and BCSD. Software obfuscation does not want
BCSD techniques to match un-obfuscated with obfuscated code success-
fully, and vice versa. There have been various techniques proposed for
software obfuscation. For ease of introduction, we categorize them by
obfuscation granularity:

• Instruction level: Instruction substitution (SUB) [33,35] replaces
the original instruction with equivalent instruction(s). O-LLVM [35
designed 10 different strategies for arithmetic and logical opera-
tions.

• Basic block level: Bogus control flow (BCF) [33,35,63] inserts
dead code into the original control flow and often utilizes per-
manent true or false predicates to prevent these codes from
being executed, thereby ensuring the original functionality of the
program.

• Function level: Control flow flattening (FLA) [33,35] converts
the control flow of the function into the ‘‘switch-case’’ form,
which is hard to analyze, and maintains the original jump rela-
tionship by controlling the values of the cases.

• Module level: Function fission [39] splits a function into multiple
sub-functions. Conversely, function fusion [39] combines two
functions into a single function. These code obfuscation tech-
niques have proved their potential to alter function semantics
significantly.

2.3. Motivation

We first conducted a comprehensive analysis of 22 BCSD works
published in top venues over the past decade. These works were
summarized based on their dataset characteristics and their ability to
handle different code transformations during evaluations.

Our findings, as summarized in Table 1, reveal that there is a lack
of a standardized dataset for BCSD techniques. Instead, the evaluated
datasets were scattered across 36 different datasets or programs. It is
worth noting that none of the 22 BCSD works utilized an identical
dataset for evaluation. Each work employed its own self-constructed
dataset, which allowed for detailed design considerations but lacked
persuasiveness in terms of dataset consistency.

Since code transformation is a common source contributing to bi-
nary code differences, testing the resilience against transformation has

become a common evaluation step for BCSD. As shown in Table 1,

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Table 1
BCSD works from top venues in the last decade, summarized by their dataset characteristics and code transformation adaptability in their evaluations.

Approach Year Venue Dataseta Code transformation adaptability Diffing characteristics

Compilerb Optionsc Obfuscationd Grane Metric Platformf

1 DiEmph [29] 2023 ISSTA 2, 7, 8, 18, 27,
➊➋ G# – F Precision ①29, 32

2 sem2vec [56] 2023 TOSEM 2, 7, 10, 11, 20,
➊➋ G# SUB, BCF, FLA F Precision ①24, 27, 36

3 VulHawk [57] 2023 NDSS 7-11, 22, 25, 27,
➊ G# – F AUC ① ② ③29, 32, 35

4 OPTango [40] 2023 ISSRE 9, 30, 31 ➊ – F Recall ①

5 TIKNIB [58] 2022 TSE 9, 16 ➊➋➌ G# SUB, BCF, FLA F self-defined ① ② ③

6 jTrans [28] 2022 NDSS 1, 9 ➊➋ G# – F Recall ①

7 ISRD [59] 2021 ICSE 5, 28, 36 ➊➋ G# – F, B, I Precision, Recall ①

8 Asteria [60] 2021 DSN 3, 12, 27 ➊ # – F ROC, AUC ① ② ④

9 DeepBinDiff [10] 2020 NDSS 7, 10, 11 ➊ G# – B Recall, Precision ①

10 Asm2Vec [12] 2019 S&P 4, 7, 9, 18-20, 24,
➊➋ G# SUB, BCF, FLA F Precision ①27, 29, 32, 36

11 SAFE [41] 2019 DIMVA 2, 6-10, 15, 21,
➊➋ G# – F ROC, AUC,

① ②26, 27, 34 Precision, Recall

12 InnerEye [13] 2019 NDSS 2, 7, 10, 11, 27 ➋ G# – B ROC, AUC ① ②

13 alphaDiff [27] 2018 ASE 9, 14 ➊➋ G# – P Recall ① ②

14 VulSeeker [14] 2018 ASE 4, 7, 9, 12, 27 ➊ G# – F Precision ① ② ③

15 FirmUp [61] 2018 ASPLOS 9, 12 – # – F Precision ① ② ③

16 BinSequence [62] 2017 ASIACCS 23, 36 ➌ # – F Precision ①

17 IMF-SIM [46] 2017 ASE 7 ➊➋➍ G# SUB, BCF, FLA F Precision ①

18 BinGo [6] 2016 FSE 9 ➊➋ G# – F Precision ① ②

19 Genius [43] 2016 CCS 4, 7, 9, 12, 27 ➊➋ G# – F Recall, FPR ① ② ③

20 Multi-k-MH [16] 2015 S&P 4, 7, 12, 27 ➊➋ G# – B TP, FP ① ② ③

21 CoP [44] 2014 FSE 13, 17, 27, 33 ➊➍ G# BCF, FLA P self-defined ①

22 BinSlayer [11] 2013 PPREW 7 ➊ # – P Precision ①

a Including 36 micro-datasets. 1: ArchLinux repositories, 2: Binutils, 3: Buildroot, 4: BusyBox, 5: Bzip2, 6: CCV, 7: Coreutils, 8: Curl, 9: CVEs, 10: Diffutils, 11: Findutils, 12:
Firmwares, 13: Gecko, 14: GitHub repositories, 15: GNU Scientific Library, 16: GNU software packages, 17: Gzip, 18: ImageMagick, 19: Libcurl, 20: Libgmp, 21: Libhttpd, 22:
Libmicrohttpd, 23: Libpng, 24: LibTomCrypt, 25: Mtools, 26: OpenMPI, 27: OpenSSL, 28: PreComp, 29: PuTTY, 30: SPEC CPU 2006, 31: SPEC CPU 2017, 32: SQLite, 33: Thttpd,
34: Valgrind, 35: Wget, 36: zlib.
b Including 4 compilers. ➊: GCC, ➋: Clang, ➌: MSVC, ➍: ICC.
c Consideration of compiler options. #: None, G#: Only default options, : Both default and non-default options.
d Consideration of code obfuscations. -: None, SUB: instruction substitution, BCF: bogus control flow, FLA: control flow flattening, IBV: Insert bogus variables, SSO: split structure
object.
e Granularity for BCSD. P: program, F: function, B: basic block, I: instruction.
f The implementation platform of the BCSD works. ①: x86, ②: ARM, ③: MIPS, ④: PowerPC.
many BCSD works have considered binaries compiled with different
mainstream compilers, and most of them concentrate on the GCC and
Clang.

Under a specific compiler, most of them only considered the default
optimization options such as O0 to O3, but failed to explore non-
default optimization options (only 1 work). However, the trend of
compiling binaries using non-default options settings other than the
default options has been increasing in recent years [31], for example,
the virus binaries used non-default options to hide their binary code
features. To this end, it is essential to evaluate the adaptability of the
BCSD tools under non-default compiler options.

In terms of code obfuscation, only a few works have considered it,
and the evaluation is often limited to intra-procedural obfuscation tech-
niques (e.g., at the statement, basic block, or function level), which do
not fundamentally change the semantics of each function. Thus existing
BCSD techniques can still capture the obfuscation effect. However,
recent advancements in code obfuscation techniques have increasingly
focused on inter-procedural obfuscations, which have shown the ability
to alter function semantics [39], which is a crucial factor in defeating
BCSD techniques.

As for the granularity, most works focus on function-level, while
some also consider basic block and instruction-level differences for
4

their specific detection purpose. Besides, the matrix that measures the
accuracy of BCSD works also varies. Some of them use standard metrics
like true positive (TP) or false positive (FP). Precision@k and Recall@k
are also used to measure the proportion of relevant results among the
top k retrieved items. Some works also define the metric based on their
specific features, which does not apply to others.

In the BSCD tool landscape, most tools are primarily developed
for the x86 platform, with some considering cross-platform compat-
ibility. While it is theoretically possible to adapt x86-focused tools
to other platforms, such adaptations would involve additional efforts
such as integrating disassembler backends and platform-specific API
construction.

As BCSD techniques continue to improve in feature extraction and
binary code representation, particularly with the application of deep
learning, their ability to capture semantics becomes more robust. Con-
sequently, while many of these works claimed superiority over others,
the lack of dataset standardization raises the possibility that dataset
mismatch could be a contributing factor to their comparative results.
Therefore, there is a need for a unified dataset that covers a wide range
of representative programs and datasets. A standardized dataset would
facilitate fair comparisons among different BCSD techniques, enabling
researchers to make more reliable and meaningful claims about their
effectiveness.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.

f

Table 2
The detail of BinCodex dataset, including the origin of the dataset and the detail of multi-level workloads.

Dataset Multi-level setting

Info Statistics Workloads Task #Binaries Compiler Metrics Options/Tools

Coreutils 113 progs
BIN-Default

Adaptability to default
whole dataset

GCC
Precision@1

O0-O3, Os, Ofast
SPEC CPU 2006 2.0M LOC compiler options. Clang O0-O3

SPEC CPU 2017 7.8M LOC
BIN-Nondefault

Adaptability to non-default
whole dataset GCC Precision@1 BinTuner [31]Libraries 522K LOC compiler options.

Firmwares 418K LOC
BIN-Obfuscated

Adaptability to different
whole dataset Clang Precision@1 O-LLVM [35], Khaos [39]#CVE 69 obfuscation methods.

#Binaries 3.1K
BIN-Vulnerable

Vulnerable function
CVEs only Clang Precision@1/10/50 O-LLVM [35], Khaos [39]#Functions 68.9M searching.
Besides, the dataset should be able to cover different kinds of trans-
ormations to fully measure the adaptability of BCSD techniques against
possible transformations, including non-default compiler options and inter-
procedural code obfuscations. This viewpoint aligns with the literature
published from both offensive and defensive perspectives:

• Many BCSD works have acknowledged the impact of inter-
procedural optimizations (e.g., function inlining) on diffing ac-
curacy [7,43,59,61,62,64–68].

• Existing research has demonstrated that inter-procedural obfus-
cation can decrease the accuracy of BCSD tools (up to 60%) with
minimal overhead (less than 5%) [39].

• Existing research [31,40] has also proved that non-default options
can decrease the accuracy of BCSD tools.

Given that all current BCSD tools only have a common implementa-
tion on the x86 platform, this paper follows the same setting to evaluate
as many BCSD tools as possible. By concentrating on this specific
instruction set, the dataset can provide a more targeted assessment of
the capabilities and limitations of BCSD tools.

3. Methodology

Considering the above factors, this paper proposes a unified dataset
that incorporates a wide range of programs and possible transforma-
tions, particularly non-default compiler options, and inter-procedural
code obfuscation techniques, and uses it to explore and evaluate exist-
ing BCSD techniques.

3.1. Challenges

Designing a dataset for BCSD poses several challenges, which can
be summarized as follows:

• Creating a representative dataset (C1): On the one hand, the
dataset’s codebase should be extensive enough to encompass a
wide range of code features. On the other hand, the dataset needs
to encompass representative programs from various application
scenarios commonly encountered in BCSD.

• Generating diverse code variants efficiently (C2): Enumerat-
ing all possible code variants is impractical due to the numerous
change points discussed in Section 2.2. For instance, even a single
change point, such as compiler options in GCC, includes over 200
options resulting in more than 2200 combinations. Exhaustively
combining these options to compile the same source code would
result in an infeasible number of binary variants. How to generate
a dataset with diverse features without exhaustively enumerating
all possible combinations is challenging.

• Normalizing features and similarity calculation (C3): BCSD
tools differ in the granularity of their features and the represen-
tation of those features. Furthermore, the similarity calculation
methods employed by each tool may vary. How to normalize
5

these disparities without deducing their accuracy is challenging.
The following subsections detail the design of BinCodex and address
the above challenges. By doing so, a meticulously designed BCSD
dataset can be constructed, enabling accurate evaluation of BCSD tools.

3.2. The BinCodex dataset

The Origin of Datasets (C1). To overcome the C1 challenge, we con-
ducted an extensive analysis of widely used software across different
domains and carefully selected representative programs from various
application scenarios commonly encountered in BCSD. As Table 2
shows, our dataset includes programs from diverse domains, such as
utility programs (e.g., Coreutils), compilers (e.g., GCC in SPEC CPU),
language interpreters (e.g., Perl interpreter in SPEC CPU), JavaScript
engines (e.g., QuickJS), network protocols (e.g., LibCurl), web ap-
plications, libraries (OpenSSL), embedded firmware (e.g., BusyBox),
and artificial intelligence applications (e.g., alpha-beta tree search and
Monte Carlo tree search).

By including programs from such diverse domains, our dataset
accurately reflects the challenges and complexities faced by BCSD tech-
niques in real-world scenarios. It provides a comprehensive evaluation
of the accuracy of BCSD tools, as it encompasses all the types of
programs used in existing BCSD works in Table 1. This ensures that
BinCodex serves as a valuable dataset for evaluating and comparing
different BCSD techniques.
Searching Space Reduction (C2). The enumeration of all compiler
options and obfuscation techniques for all compilers is impossible
because of the large searching space. To this end, our reduction mainly
contains the following 3 steps.

Inter-compiler reduction. In our dataset, we first chose to focus
on the GCC and Clang compilers for alignment with existing BCSD
research and their widespread usage with extensive optimization ca-
pabilities. Based on that, we reduce the inter-compiler searching space
by concentrating binary variants under their default compiler options. For
example, as shown in Table 2, GCC and Clang are both used when
considering the default compiler options (BIN-Default workload), and
only GCC is used when considering the non-default compiler options
(BIN-Nondefault workload).

The exclusion of Clang in the BIN-Nondefault workload was a delib-
erate decision made for the purpose of introducing a specific challenge
and evaluating the adaptability of BCSD tools to non-default compiler
options using a single compiler. By concentrating on GCC for the non-
default compiler options, we aimed to isolate and assess the challenges
posed by non-default options in binary code analysis. This approach
allowed us to investigate the specific impact of non-default options on
BCSD without the additional variability introduced by using multiple
compilers in this particular workload.

Intra-compiler reduction. Exhaustively combining non-default op-
tions to compile the same source code would result in an infeasible
number of binary variants. Besides, different programs are likely to use
different combinations of options since their code patterns are different.
For example, the funroll-loops option can change binary for
programs with loops but has no effect on those programs without loops.
To acquire the program-specific combinations, we tailor search-based

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.

c
s
o

B
f
c
s
i

iterative compilation for the auto-tuning of non-default compiler options.
Specifically, we utilize the BinTuner [31] tool, which uses the genetic
algorithm to reveal the optimal effects on binary code differences. By
adopting such an efficient approach, we can strategically select a subset
of compiler flags, optimization levels, and code transformations to
generate a diverse set of code variants without the need for exhaustive
enumeration.

Obfuscation reduction. In our dataset, we have included obfus-
cation techniques as an important aspect of evaluation, considering
the sensitivity of BCSD techniques to code obfuscation. To represent
this, we selected two well-known obfuscation tools based on the LLVM
infrastructure.

The first obfuscation tool is O-LLVM [35], a popular compiler-
based obfuscation tool widely used in software engineering, systems
security, and programming language research. O-LLVM offers three
intra-procedural obfuscation methods of different granularity: SUB, BCF,
and Fla.

Additionally, we incorporated the inter-procedural obfuscation tool
alled Khaos [39] in our dataset. Khaos focuses on changing function
emantics, a key factor in defeating BCSD techniques. It provides two
bfuscation primitives named Fission and Fusion.

When generating obfuscated binaries, we established a baseline
by using the commonly used compiler option instead of generating
obfuscated binaries for all options. Specifically, we chose the O2 op-
timization level as the baseline. This decision was made because O0
and O1 optimization levels are less commonly used in real-world appli-
cations, while the O3 optimization level may remove the obfuscation
effect of O-LLVM (further discussed in Section 6).
Metrics (C3). To overcome the disparities of evaluation metrics, it
is crucial to establish a standardized metric for similarity calculation.
From our observation, these disparities come from the online searching
stage (introduced in Section 2.1). Specifically, after the feature is
extracted from the binary file and the distance is calculated, different
tools use diversity methods to explain the accuracy. To this end,
we abandon the different metrics of different BCSD tools and use a
consistent measurement for the accuracy — precision@k, which is also
commonly used in several BCSD works [12,28,29,31,56].

In the BCSD scenario, the search results are presented as a ranked
list. Consider two binary files 𝑃 and 𝑄 that are compiled from the same
source code but with different options. Each of them has 𝑁 functions,
where 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑖,… , 𝑝𝑁} and 𝑄 = {𝑞1, 𝑞2,… , 𝑞𝑖,… , 𝑞𝑁}. The
ground truth is 𝑝𝑖 matches 𝑞𝑖, where 𝑝𝑖 ∈ 𝑃 and 𝑞𝑖 ∈ 𝑄. For each
function 𝑝𝑖 ∈ 𝑃 , the BCSD tools identify the top-k functions in 𝑄
that are most similar to 𝑝𝑖. These functions are ordered by a similarity
score, indicating their rank 𝑅𝑎𝑛𝑘𝑞𝑖 in the list. Utilizing the definitions
of precision, the precision ratio 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 is determined using the
following metric:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 = 1
𝑁

∑

𝑝𝑖∈𝑃 (𝑅𝑎𝑛𝑘𝑞𝑖 ≤ 𝑘) × 100% (1)

For example, if the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 of a specific BCSD tool exceeds
80%, it means over 80% functions in 𝑃 are matched correctly in the
top-10 candidate functions from 𝑄. By normalizing the metrics of dif-
ferent BCSD tools and mapping the results to a common representation
space, the dataset can facilitate fair and consistent evaluation.
Multi-level workloads. As shown in Table 2, BinCodex contains 4
different workloads. The BIN-Default workload aims to evaluate the
adaptability to default compiler options, which is commonly used
in real-world programs. The BIN-Nondefault workload is specifically
designed for the emerging use of non-default options, which are con-
firmed by security analysts that these options can make reverse en-
gineering analysis complicated [31,69]. Obfuscation often introduces
challenges to existing BCSD tools, given that they extract syntactic-
or graph-level information, which does not necessarily reflect the real
functionality, thus the BIN-Obfuscated workload is used to evaluate if
these tools are vulnerable to assembly codes with similar functional-
ity but the differing appearance. Considering the diverse application
6

Algorithm 1: Dataset generation algorithm.
Input: Program source code set 𝑝𝑟𝑜𝑔𝑆𝑒𝑡, 𝑁𝑑𝑒𝑓 , 𝑁𝑛𝑜𝑛𝑑𝑒𝑓 , 𝑁𝑟,

𝑁𝑜𝑏𝑓
Output: Binary variants dataset 𝑏𝑖𝑛𝑆𝑒𝑡
𝑏𝑖𝑛𝑆𝑒𝑡 ← {}
for each program 𝑝𝑟𝑜𝑔 ∈ 𝑝𝑟𝑜𝑔𝑆𝑒𝑡 do

for 𝑖 = 1 to 𝑁𝑑𝑒𝑓 do
𝑑𝑒𝑓 ← 𝑔𝑒𝑡𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑂𝑝𝑡𝑖𝑜𝑛(𝑖);
𝑏𝑖𝑛𝑑𝑒𝑓 ← Compile 𝑝𝑟𝑜𝑔 with option 𝑑𝑒𝑓 ;
𝑏𝑖𝑛𝑆𝑒𝑡[𝑝𝑟𝑜𝑔].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑖𝑛𝑑𝑒𝑓);

end
for 𝑖 = 1 to 𝑁𝑛𝑜𝑛𝑑𝑒𝑓 do

𝑑𝑒𝑓 ← 𝑔𝑒𝑡𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑂𝑝𝑡𝑖𝑜𝑛(𝑖);
𝑏𝑖𝑛𝑑𝑒𝑓 ← Compile 𝑝𝑟𝑜𝑔 with option 𝑑𝑒𝑓 ;
𝑚𝑎𝑥𝑑𝑖𝑓𝑓 ← 0;
𝑏𝑖𝑛𝑚𝑎𝑥 ← 𝑏𝑖𝑛𝑑𝑒𝑓 ;
for 𝑖 = 1 to 𝑁𝑟 do

𝑏𝑖𝑛𝑛𝑜𝑛𝑑𝑒𝑓 ← 𝐵𝑖𝑛𝑇 𝑢𝑛𝑒𝑟(𝑏𝑖𝑛𝑑𝑒𝑓);
𝑑𝑖𝑓𝑓 ← 𝐵𝑖𝑛𝐷𝑖𝑓𝑓 (𝑏𝑖𝑛𝑑𝑒𝑓 , 𝑏𝑖𝑛𝑛𝑜𝑛𝑑𝑒𝑓);
if 𝑚𝑎𝑥𝑑𝑖𝑓𝑓 < 𝑑𝑖𝑓𝑓 then

𝑚𝑎𝑥𝑑𝑖𝑓𝑓 ← 𝑑𝑖𝑓𝑓 ;
𝑏𝑖𝑛𝑚𝑎𝑥 ← 𝑏𝑖𝑛𝑛𝑜𝑛𝑑𝑒𝑓 ;

end
end
𝑏𝑖𝑛𝑆𝑒𝑡[𝑝𝑟𝑜𝑔].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑖𝑛𝑚𝑎𝑥);

end
for 𝑖 = 1 to 𝑁𝑜𝑏𝑓 do

𝑜𝑏𝑓 ← 𝑔𝑒𝑡𝑂𝑏𝑓𝑂𝑝𝑡𝑖𝑜𝑛(𝑖);
𝑏𝑖𝑛𝑜𝑏𝑓 ← Compile 𝑝𝑟𝑜𝑔 with option 𝑜𝑏𝑓 ;
𝑏𝑖𝑛𝑆𝑒𝑡[𝑝𝑟𝑜𝑔].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑖𝑛𝑜𝑏𝑓)

end
end
return 𝑏𝑖𝑛𝑆𝑒𝑡;

scenarios of BCSD, BinCodex also adopts 69 CVEs to form the BIN-
Vulnerable workload for the specific vulnerable code searching scenario
and normalizes the measurement using precision@k.

The workloads are designed in increasing order of difficulty for
CSD tools, with the first three of them representing a progression
rom easier to harder transformations. For instance, most BCSD tools
an handle transformations between O0 and O3, but only a few con-
ider non-default options, and they all face challenges when deal-
ng with inter-procedural obfuscation [39]. The BIN-Obfuscated work-

load presents similar difficulties to BCSD tools as the BIN-Vulnerable
workload, as the vulnerable codes in the latter are also obfuscated.
To precisely measure the vulnerability search result, it uses more
comprehensive measurements — precision@1/10/50.

3.3. Workflow of BinCodex

For the dataset listed in Table 2, algorithm 1 outlines the workflow
of BinCodex to generate their binary variants. For each program 𝑝𝑟𝑜𝑔 in
the 𝑝𝑟𝑜𝑔𝑆𝑒𝑡, three types of variants, namely default compiler options,
non-default compiler options, and code obfuscation, are applied to 𝑝𝑟𝑜𝑔
to produce a set of binary variants, which are then added to 𝑏𝑖𝑛𝑆𝑒𝑡.
𝑁𝑑𝑒𝑓 , 𝑁𝑛𝑜𝑛𝑑𝑒𝑓 , and 𝑁𝑜𝑏𝑓 denote the number of default compiler options,
non-default compiler options, and code obfuscation techniques that
need to be generated for each 𝑝𝑟𝑜𝑔, respectively.

Firstly, when generating the binary variants with default compiler
options, we choose all default compiler options (2 compilers, 10 options
in all) in Table 2 to apply. Secondly, to ensure the diversity of the
generated samples under non-default compiler options, we perform 𝑁𝑟

rounds of generating binary variants by the BinTuner [31] tool and use

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.

c
s
t

p
t
o
w
a
a

p
b
B
f
o ,
o
r
p
w
a
o

4

o

Table 3
Summary of the chosen diffing works.

BCSD Diffing Symbol Time/memory Call-graph
works granularity relying consuming lacking

Asm2Vec [12] function N N Y
SAFE [41] function N N Y
DeepBinDiff [10] basic block N Y N
jTrans-0 [28] function N Y Y
jTrans [28] function N Y Y
BinDiff [42] all Y N N
DiEmph [29] function N Y Y
VulSeeker [14] function N Y Y

the BinDiff [42] to select the most different variant 𝑏𝑖𝑛𝑚𝑎𝑥. Thirdly, for
each selection of the obfuscation technique, we generate all obfuscated
variants from them under the same baseline. After the above process,
the BinCodex contains 68,930,974 binary functions (3,627,946 functions
in the source code, with 19 variants for each function), which is the
largest dataset to our best knowledge.

4. Implementation and evaluation

The BinCodex is implemented under the Linux operating system. The
evaluation is conducted on Ubuntu 22.04 (Kernel v5.15.0) which runs
on the x86_64 platform (Intel Xeon Gold 6148 CPU with 160 cores
and 1.5TB memory) since all current BCSD tools only have common
implementation in the x86 platform. This section aims to answer the
following questions:

• (Q1) How do the state-of-the-art BCSD works perform on
BinCodex?

• (Q2) What is the impact of the three levels of code transformation
techniques, namely default compiler options, non-default com-
piler options, and code obfuscation, on the effectiveness of BCSD
works?

• (Q3) What kinds of code transformation have the greatest impact
on the BCSD works?

Corresponding to the four workloads in BinCodex, the evaluation
consists of four parts, including the adaptability to the default compiler
options using GCC and Clang (Section 4.1), the non-default compiler
options using GCC (Section 4.2), the code obfuscation using Clang
(Section 4.3), and a specific application scenario of BCSD — vulnerable
function searching (Section 4.4).
Confrontation targets. We leverage 8 state-of-the-art BCSD tools to
evaluate BinCodex. Their characteristics are summarized in Table 3.
All learning-based tools among them are retrained on BinCodex. The
olumn ‘‘symbol relying ’’ means whether the un-stripped binaries have
ide-effects or not, for example, BinDiff [42] uses function names
o reduce the searching space. The column ‘‘time/memory consuming ’’

means the diffing process takes a long time (e.g., over one 1 month) or
requires a lot of memory (e.g., more than 1 TB). The column ‘‘call-graph
lacking ’’ means whether the call-graph is used as the feature. Their
detailed techniques are as follows:

• Asm2Vec [12] employs random walks on the function CFG to
sample instruction sequences and then uses the PV-DM model to
learn function and instruction token embedding jointly.

• SAFE [41] utilizes a word2vec model to generate instruction
embeddings and proposes a recurrent neural network for function
embedding generation.

• DeepBinDiff [10] is a learning-based work for diffing the seman-
tic similarity in basic block granularity.

• jTrans-0 [28] incorporates control flow information from binary
code into transformer-based language models for function embed-
ding. jTrans [28] fine-tunes the pre-trained model to generate
function embedding for the supervised learning task of binary
diffing.
7

• BinDiff [42] is an industry-standard binary diffing tool, which
diffs the semantic similarity in different granularity (e.g., instruc-
tion, basic block, function, call graph).

• DiEmph [29] detects undesirable instruction distribution biases
caused by specific compiler conventions and repairs them by
removing them from the dataset and fine-tuning the models.

• OPTango [40] is a transformer-based multi-central representa-
tion learning approach, which purely explores the solution to
build a compiler optimization-agnostic tool.

• VulSeeker [14] is a vulnerability seeker that integrates function
semantic emulation with semantic learning.

The selection of the eight BCSD tools for evaluation was carefully
considered to cover a diverse range of techniques and approaches in
the field. The rationale behind their selection can be summarized as
follows:

1) Representation of Different Techniques. The chosen tools represent
a variety of techniques employed, which ensures a compre-
hensive evaluation of BinCodex’s performance across different
methodologies, allowing us to analyze its effectiveness in various
scenarios.

2) Learning-Based Approaches. Given almost all state-of-the-art diff-
ing tools are learning-based, we included 6 learning-based tools.
By evaluating BinCodex with these tools, we can assess its com-
patibility with learning-based approaches and compare its per-
formance against state-of-the-art models.

3) Industry-Standard Tool. BinDiff, known as an industry-standard
binary diffing tool, is included to provide a benchmark for
comparison. Its comprehensive analysis capabilities, including
instruction-level, basic block-level, function-level, and call
graph-level comparisons, make it a valuable tool for evaluating
BinCodex.

4) Compiler Optimization-Agnostic Tools. Tools like OPTango were
selected to evaluate BinCodex’s robustness against different com-
piler optimization variants. These tools focus on building
optimization-agnostic models to overcome the challenges posed
by variations in compiler optimization levels.

5) Vulnerability Detection. VulSeeker, a vulnerability seeker tool, is
included to assess BinCodex’s effectiveness in detecting vulner-
abilities in binary code. This tool incorporates semantic emula-
tion and learning techniques to identify potential vulnerabilities,
providing a specific use case for evaluation.

Overall, the selection of these eight BCSD tools ensures a com-
rehensive assessment of BinCodex. By including tools with diverse
echniques, learning-based approaches, industry-standard benchmarks,
ptimization-agnostic models, and vulnerability detection capabilities,
e can thoroughly evaluate BinCodex’s performance, compatibility,
nd effectiveness across different dimensions of binary code similarity
nalysis.

Each BCSD tool has its own specific application scenario and ca-
abilities. In the evaluation process, the tools were selected and used
ased on their suitability for the respective tasks. For instance, Deep-
inDiff [10] focuses on diffing binaries at the basic block level. There-
ore, it was specifically evaluated in the code obfuscation part, where
bfuscation methods can alter the basic blocks of the code. DiEmph [29]
n the other hand, relies on jTrans [28] as its underlying tool. As a
esult, DiEmph was solely used in the code obfuscation part of the ex-
eriment, where jTrans was evaluated comprehensively. OPTango [40]
as evaluated in the compiler-option-relevant parts of the experiment,
ligning with its claim of being specifically designed for compiler
ptions.

.1. Adaptability to default compiler options

To evaluate the adaptability of BCSD tools under default compiler
ptions, the experiment used the BIN-Default workload in the BinCodex.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Fig. 3. The precision@1 results of chosen binary diffing works for binaries generated by default compiler options.
Space reduction. To avoid the exhaustive enumeration of different op-
timization levels, we defined a baseline by selecting binaries generated
with the O0 and O2 options (including Os and Ofast for GCC). These
baseline binaries were used for the targets of diffing, where binaries
generated with the O1 and O3 options were sequentially compared.
For example, the binary 400.perlbench-O1 would be compared with
both 400.perlbench-O0 and 400.perlbench-O2 binaries. Similarly, the
400.perlbench-O3 binary would also be compared with them. The results
of these comparisons were then averaged.

This experimental setup allowed for efficient exploration of all
default compiler options. From the optimization perspective, all the
binaries can be regarded as two groups: unoptimized and optimized.
The baseline contains the unoptimized and optimized binaries at the
same time (e.g., O0 as the unoptimized, O2 as the optimized), as well
as the binaries used for querying (e.g., O1 as the unoptimized, O3 as
the optimized). In this way, the number of options is reduced from 210

(10 options in all) to 2 (optimized and unoptimized).
Results. The experiment’s results are shown in Fig. 3. The precision@1
means the BCSD tool can match the optimized function with the
unoptimized function on the first candidate in its rank list, and higher
accuracy means higher adaptability. For example, the results indicate
that all the BCSD tools achieved a precision rate higher than 50%,
which means all the BCSD tools can match over half of the functions as
the first candidate. OPTango [40] demonstrated the best adaptability,
followed by jTrans/jTrans-0 [28], Asm2Vec [12], and SAFE [41].

An interesting observation was made during the experiment: larger
binary sizes tended to yield lower accuracy. This phenomenon can be
attributed to the relationship between the searching space and the num-
ber of functions. As the number of functions increases, the searching
space expands, and the likelihood of finding similar functions within
the same binary also grows. Consequently, the false positive ratio
increases. This observation was also noted in subsequent evaluations
involving non-default compiler options and code obfuscations, which
is discussed further in Section 6. Additionally, the OpenMP-related
programs in SPEC CPU 2017 are slightly harder for the BCSD tools to
achieve a high precision compared with non-OpenMp binary variants.

4.2. Adaptability to non-default compiler options

In this subsection, the adaptability of BCSD tools under non-default
compiler options is evaluated using the BIN-Nondefault workload. Bin-
Tuner [31] is utilized to generate binaries with non-default options
effectively.
The BinTuner tool. BinTuner [31] follows a specific procedure to
generate binaries. Initially, it selects a baseline binary, such as the one
generated with the O0 option. Then, it iteratively searches for the target
binary by combining non-default options. During the search process,
8

BinTuner leverages the differences between the baseline binary and
the target binary to guide the selection of the next combination of
options. This iterative approach allows BinTuner to effectively explore
the vast space of non-default compiler options and generate binaries
for evaluation purposes.

However, BinTuner is not a panacea, especially when the different
optimization levels are considered. For example, we first set the O0 as
the baseline for BinTuner, after it generated the binaries, we utilized
BinDiff [42] to calculate the difference with the baseline. As depicted in
Fig. 4, we observed that a significant portion of the generated binaries
exhibited similarity to the O3 variants, indicating a lack of diversity.
This outcome suggests that BinTuner may not effectively explore the
entire optimization space when only one baseline is considered.
Multi-baseline setting. Firstly, to enhance the diversity of the evalua-
tion, different default optimization levels (O0, O1, O2, O3) were chosen
as the baselines to generate binaries using BinTuner. This approach
resulted in the creation of four groups of binaries (Ot0, Ot1, Ot2, Ot3)
where each group was based on a specific default optimization level.
Secondly, in addition to the individual groups, a fifth group of binaries
(Ot4) was generated by setting all four default optimization levels as
the baseline simultaneously. This group’s binaries were distinct from
those generated by any of the default options alone. Lastly, to provide
a comprehensive evaluation, all five groups of binaries (Ot0, Ot1, Ot2,
Ot3, Ot4) were also merged into a single group (Ot). This merged
group encompasses the entire range of binary variations generated by
BinTuner.
Overlap in default and non-default options. There is an overlap
between default and non-default compiler options, for example, both
of them have -funroll-loop and -finline options. However, the
default option binds options in the specific combination (for example,
O3 enables -funroll-loop and -finline at the same time), while
the non-default option does not bind the combination (for example,
enable -finline option but disable -funroll-loop option at the
same time), which can enlarge the binary difference. The detailed
options used by BinTuner are shown in Table 6.

It is important to note that each binary was created by incorporating
over 100 different non-default option configurations. The details of
these configurations can be found in Table 7. By merging the different
groups of binaries and conducting binary similarity detection on the
combined dataset, the evaluation aimed to assess the adaptability and
performance of the BCSD tools across a wide range of non-default
compiler option configurations.
Result. The results are shown in Fig. 5, where every group shows the
same trends of accuracy. Consider the Ot2 set as an example, where the
target binaries are generated by searching for the maximum difference
from the O2-based binary, Asm2Vec achieves the precision@1 scores
of 0.537, SAFE and jTrans-0 demonstrate similar diffing accuracy,

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Fig. 4. The similarity score (normalized) of binaries generated by BinTuner [31] by only using the O0 as the baseline.
Fig. 5. The precision@1 results of chosen binary diffing works for binaries generated
by non-default compiler options in GCC compiler. Higher similarity means higher
adaptability.

achieving 0.571 and 0.563, respectively. jTrans outperforms jTrans-0
by 12.1% but falls 4.1% behind OPTango, which stands out with a
precision of 0.726.

We also put the accuracy result of binaries generated by the default
options in the rightmost group in Fig. 5(Default). By comparing it
with the Ot4 group, we can notice a significant decrease in accu-
racy under the non-default option settings compared to the default
option settings for these binary diffing methods, which highlights the
motivation of BinCodex.

4.3. Adaptability to code obfuscation

Obfuscators. As discussed in Section 3.2, we used the commonly used
compiler option O2 as the baseline, and generated the obfuscated and
un-obfuscated binaries in the BIN-Obfuscated workload. We keep all
the binaries un-stripped to get the ground truth of paring. Besides, the
Khaos [39] changes the number of functions because it is an inter-
procedural obfuscation tool, thus we followed its evaluation setting
to relax the requirements for Precision@1. The O-LLVM [35] remains
unchanged since it does not change the function count. To ensure the
consistency of the evaluation environment for the obfuscation tools,
we upgrade the LLVM version of O-LLVM [35] to 9.0.1, which is the
same as the Khaos [39]. All the existing BCSD tools adopted the old
version of LLVM, which loses the obfuscation effect when facing a high
optimization level (e.g., O3).
Histogram of Opcodes. We collected some internal information on
the dataset to reveal the details of BinCodex. We used the objdump
tool to disassemble all the binaries in BinCodex and calculated the
histogram of opcodes. By comparing the vectors of opcodes between the
original and obfuscated binaries, we can calculate the vector similarity.
Since different programs may have varying numbers of instructions,
we normalized the distances using the maximum similarity among all
obfuscated programs. As depicted in Fig. 6, the distribution of opcodes
varies in different obfuscation methods, in which Fission generates
the binaries with the longest opcode distance and SUB generates the
shortest. It demonstrates that BinCodex contains a diverse range of
opcodes, and thus can fully cover the obfuscated binary scenario.
Results. After the binary is generated, we evaluated the accuracy of
the selected BCSD tools by comparing obfuscated and un-obfuscated
binaries. As depicted in Fig. 7, the result is divided into different groups
by different obfuscation methods. The precision@1 means the BCSD
9

tool can match the obfuscated function with the unobfuscated function
on the first candidate in its rank list, and higher accuracy means
higher adaptability. Among these obfuscation methods, compared with
inter-procedural code obfuscation (Fission and Fusion), the BCSD
tools are more adaptive to intra-procedural obfuscation (e.g., SUB and
BCF). Besides, while the control flow flattening (FLA) archives a strong
obfuscation effect, it also brings extremely high runtime overhead (2.8x
slowdown), which is undesirable in real-world scenarios.

Binary variants that are obfuscated by the instruction substitution
(SUB) are the easiest to pair, mainly because it does not change the
function’s control flow but only replace the opcodes of instructions,
which are easy to adopt since these opcodes belong to the same opcode
family, e.g., ALU. Although the bogus control flow (BCF) inserts dead
code in the function, it has merely interfered with the original function
control flow, thus also bringing limited obfuscated effect.

Inside each obfuscation method, different BCSD tools show different
adaptability. We discuss them as follows:

• VulSeeker [14] takes more than 1 day to diff two large binaries
and often gets killed due to memory limit. To speed up VulSeeker,
we group the related functions into small groups to manually
reduce the searching space.

• SAFE [41] and Asm2Vec [12] showed their advantages on intra-
procedural obfuscation by capturing the semantics of functions.

• Because DeepBinDiff [10] uses the basic block as its granularity,
its searching space is much larger than others and brings the
time/memory consuming issue (e.g., requiring more than 10TB
memory, waiting several weeks to compare two binaries). To
this end, We reduced the dataset for DeepBinDiff [10] by only
using programs with less than 40k lines of code. In this setting, it
achieved higher accuracy in inter-procedural obfuscation meth-
ods (e.g., Fusion). This is because Khaos [39] uses original
functions to obfuscate each other, lacking material reduces the
obfuscation effect.

• Since we retrained the model of jTrans on BinCodex, it is more
accurate than the pre-trained model jTrans-0.

• After DiEmph [29] detected the undesirable instruction distri-
bution biases, it fine-tuned the models of jTrans [28], thus its
adaptability is slightly higher than jTrans [28].

• Since BinDiff [42] takes advantage of function names of the
symbols, its results are a little higher than others.

4.4. The ability to search vulnerable code

We use the BIN-Vulnerable workload in BinCodex to evaluate the
ability to search real-world vulnerable code, each program contains at
least one vulnerability (detailed in Table 5). In this experiment, we used
Asm2Vec [12], VulSeeker [14] and SAFE [41] to calculate the preci-
sion@n ratio (the rank of truly matched pair in the matched result) of
vulnerable functions. The reason why other tools were not used is that
they only give top-1 matched results. We calculated precision@1/10/50
ratio of vulnerable functions.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Fig. 6. The heat map of opcode histogram distance (normalized) of obfuscated binaries in BinCodex.
Fig. 7. Similarity results of chosen binary diffing works and tools. Diffing works use
precision@1, and BinDiff uses its normalized scores. Higher similarity means a higher
adaptability.

Table 4
Comparison with other BCSD datasets.

Dataset Statistics Transformationsa

Source #Funcs Def Non-Def Obf

Esh [3] 8 CVE 1.5K ✔ ✘ #
BINKIT [70] GNU packages 36M ✔ ✘ G#
BinaryCorp [28] GNU packages 25M ✔ ✘ #

BinCodex

GNU packages,

69M ✔ ✔
libraries, SPEC
CPU, firmware,
69 CVE

a The possible transformations that the dataset considered, including default compiler
options (Def), non-default compiler options (Non-Def), and code obfuscations (Obf,
#: none, G#: only intra-procedural obfuscation methods, : both intra-procedural and
inter-procedural obfuscation methods).

Fig. 8 gives the experimental results, which are divided into three
groups as precision@1/10/50. The precision@1 means the BCSD tool
can match the obfuscated function with the unobfuscated function on
the first candidate in its rank list, while the precision@10 means it can
match them in the top-10 candidates in its rank list, thus the accuracy
is ascending in from precision@1 to precision@50. For example, the
precision@50 ratio of Fission on Asm2Vec is around 0.5, which
means about 50% of vulnerable functions can be found within the
top-50 ranked functions using Asm2Vec.

Inside the same group, the precision ratio can reflect the vulnerable
function searching ability of different BCSD tools. For example, for the
precision@1 group, Asm2Vec [12] is more accurate than SAFE [41],
and both of them are better than VulSeeker [14]. Besides, it can
also reveal the ability to hide the vulnerable function with different
obfuscation methods. For example, under the same precision and binary
diffing tool (e.g., precision@50-Asm2Vec), Fission and Fusion are
better than SUB, BCF, and FLA.

5. Related works

Existing research often lacks transparency when it comes to disclos-
ing their datasets. Among the few open datasets available, as shown
in Table 4, Esh [3] proposed a dataset purely for vulnerability search-
ing but with only 8 vulnerabilities. BinKit [70] claims as the largest
binary dataset, however, it only consists of software from GNU pack-
ages like GNUtils and coreutils. Additionally, it only includes variants
10
of compiler options for default optimization levels ranging from O0
to Ofast, which are fully covered in our proposed BinCodex dataset.
Although BinKit considers code obfuscation, it only focuses on intra-
procedural methods, which have been proven ineffective in both our
evaluation and other works [39]. Another recent open-source dataset,
Binarycorp [28], claims to offer diversity in terms of project size and
application scenarios compared to BinKit. However, it only utilizes five
compile options from O0 to Os, which are also included in our BinCodex
dataset.

In contrast, our newly proposed BinCodex dataset provides a more
comprehensive and realistic foundation. To the best of our knowledge,
it encompasses the largest code base, including a diverse range of
code sources such as GNU software packages, JS engines, firmware,
and common libraries. Importantly, BinCodex incorporates 69 real-
world vulnerable functions to cover more vulnerability patterns when
facilitating the vulnerability searching scenario. Furthermore, it in-
cludes full-scale transformations such as non-default options and inter-
procedural code obfuscation techniques, which have been neglected in
other datasets but have been proven effective both in our evaluation
and other works [39,40].

By incorporating these diverse factors, BinCodex offers valuable
insights for BCSD techniques to learn from and evaluate the resilience
of binary diffing methods against a wide range of compilation opti-
mization variants and code obfuscation techniques. As mentioned in the
introduction section, we are committed to contributing to the research
community by making our dataset and trained models openly available.
This will enable other researchers to utilize and build upon our work,
fostering collaboration and further advancements in the field of binary
code similarity and vulnerability analysis.

6. Discussion

Cross-platform consideration. As shown in Table 1, all current BCSD
tools have their implementation in the x86 platform, thus the current
dataset construction process primarily focuses the dataset specifically
on evaluating BCSD techniques on the x86. Future work aims to in-
corporate cross-platform binaries to assess the accuracy of BCSD tech-
niques across different architectures. This will require addressing the
unique characteristics of each instruction set to ensure fair and mean-
ingful comparisons. Including cross-platform binaries in the dataset is
a valuable direction for future research.
Existing obfuscators. Aside from obfuscation techniques, we found
that existing obfuscators have limitations in their implementation. In
O-LLVM [35], In the process of implementing the SUB method, we
found that the substituted instructions are usually optimized back to the
original instructions, which would lose the obfuscation effect. To this
end, we additional add strategies to prevent the de-obfuscation effect,
including basic block splitting, adding reference or inline assemble
nop instructions in the middle, etc. Besides, BCF and FLA skip the
exception-relevant functions.

As for the inter-procedural obfuscation techniques, after it separates
and aggregates these features, the searching difficulty increases, and
the searching accuracy decreases. From our conclusion in table Table 3,
the lack of call-graph consideration makes them unable to adopt inter-
procedural obfuscation. We believe our study will raise awareness of
inter-procedural obfuscation on binary diffing.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Fig. 8. Precision ratio for top@1/10/50 of vulnerable functions. Higher means stronger vulnerable function searching ability.
Table 5
Vulnerable code detail in BinCodex.

Program CVE Funtion Program CVE funtion

JerryScript CVE-2020–13991 opfunc_spread_arguments

libcurl

CVE-2016–5421 close_all_connections

QuickJS CVE-2020–22876 compute_stack_size_rec CVE-2016–7167 curl_easy_unescape

BusyBox1.33.1

CVE-2021–42378 getvar_i_int CVE-2016–8615 get_line
CVE-2021–42380 clrvar CVE-2016–8616 ConnectionExists
CVE-2021–42381 hash_init CVE-2016–8617 Curl_base64_encode
CVE-2021–42382 getvar_s CVE-2016–8618 alloc_addbyter
CVE-2021–42379 next_input_file CVE-2016–8621 parsedate
CVE-2021–42384 handle_special CVE-2016–8622 unescape_word
CVE-2021–42386 nvalloc CVE-2016–8623 Curl_cookie_getlist
CVE-2021–42383 evaluate CVE-2016–8624 parseurlandfillconn
CVE-2021–42385 evaluate CVE-2016–8625 curl_version

OpenSSL 1.1.1

CVE-2022–0778 BN_mod_sqrt CVE-2016–9586 dprintf_formatf
CVE-2021–3712 EC_GROUP_new_from_ecparameters CVE-2017–1000100 tftp_send_first
CVE-2021–3711 sm2_plaintext_size CVE-2017–1000254 ftp_statemach_act
CVE-2021–3450 check_chain_extensions CVE-2017–1000257 imap_state_fetch_resp
CVE-2021–3449 init_sig_algs CVE-2017–8817 setcharset
CVE-2020–1971 GENERAL_NAME_dup CVE-2018–1000007 Curl_http_output_auth
CVE-2020–1967 tls1_check_sig_alg CVE-2018–1000120 ftp_state_list
CVE-2019–1563 cms_RecipientInfo_ktri_decrypt CVE-2018–1000120 ftp_done
CVE-2019–1547 EC_GROUP_set_generator CVE-2018–1000120 ftp_parse_url_path
CVE-2019–1543 chacha_init_key CVE-2018–1000122 readwrite_data
CVE-2018–0734 dsa_sign_setup CVE-2018–1000301 Curl_http_readwrite_headers
CVE-2018–0735 ec_scalar_mul_ladder CVE-2019–5436 tftp_connect

libcurl

CVE-2014–0138 ConnectionExists CVE-2019–5482 tftp_connect
CVE-2014–3613 Curl_cookie_add CVE-2020–8231 conn_is_conn
CVE-2014–3620 Curl_cookie_add CVE-2020–8231 curl_easy_duphandle
CVE-2014–3707 FormAdd CVE-2020–8231 curl_multi_add_handle
CVE-2014–8150 parseurlandfillconn CVE-2020–8231 Curl_open
CVE-2015–3143 ConnectionExists CVE-2020–8231 curl_multi_remove_handle
CVE-2015–3145 sanitize_cookie_path CVE-2020–8285 init_wc_data
CVE-2015–3148 Curl_http_done CVE-2021–22876 Curl_follow
CVE-2015–3153 Curl_init_userdefined CVE-2021–22898 suboption
CVE-2016–0755 ConnectionExists CVE-2021–22924 create_conn
CVE-2016–5419 Curl_clone_ssl_config CVE-2021–22925 suboption
CVE-2016–5420 Curl_ssl_config_matches
Advancing BCSD. Reducing the cost of diffing in binary code similarity
detection is a challenge, particularly when dealing with smaller diffing
granularity. Context information can be leveraged to narrow down
the searching space and mitigate the associated costs. While previous
works have predominantly focused on capturing and encoding control
flow information, data flow has received less attention from the BCSD
perspective. However, considering that data flow is harder to change
during obfuscation, there is untapped potential in exploring data flow
representation for improved BCSD techniques.

Furthermore, as observed in Section 4, larger binary sizes can lead
to decreased diffing accuracy. To address this, one approach is to
merge functions into groups, effectively reducing the searching space.
An example of such an approach is FirmUp [61], which emphasizes
optimizing the searching process rather than solely focusing on feature
generation. This highlights the potential for further optimization in the
searching process to enhance the accuracy of BCSD techniques.

7. Conclusion

We present a paper that addresses the challenges in the binary code
similarity detection dataset and introduces the implementation and
11
evaluation of a novel dataset called BinCodex. The primary objective
of the dataset is to provide a standardized framework for evaluating
BCSD techniques. To ensure the dataset’s effectiveness, several factors
are carefully considered during its construction, including diverse code
types, a wide range of code samples, incorporating multiple aspects of
binary change points, and different levels of workloads in similarity
detection tasks. The implementation of BinCodex on a Linux system
enables the evaluation of eight state-of-the-art BCSD tools. The results
indicate that most BCSD works perform well when default compiler op-
tions or intra-procedural code obfuscation are used but face challenges
with non-default options and inter-procedural obfuscation techniques.
These findings provide valuable insights into the current state of BCSD
works and highlight opportunities for future optimizations in the field.

CRediT authorship contribution statement

Peihua Zhang: Writing – original draft, Software, Methodology,
Formal analysis, Conceptualization. Chenggang Wu: Supervision, Con-
ceptualization. Zhe Wang: Writing – review & editing, Conceptualiza-
tion.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
12

influence the work reported in this paper
Appendix
See Tables 5–7.
Table 6
All compiler options in GCC, classified and incremental by the default optimization level. BinTuner uses all these options with all possible combinations.
-O1 (compared with O0) -O2 (compared with -O1) -O3 (compared with -O2) Others

auto-inc-dec branch-count-reg
compare-elim

align-functions align-jumps align-labels gcse-after-reload early-inlining-insns

combine-stack-adjustments
cprop-registers

caller-saves code-hoisting crossjumping loop-interchange gcse-cost-distance-
ratio

defer-pop delayed-branch
forward-propagate

cse-follow-jumps cse-skip-blocks gcse-lm loop-unroll-and-jam iv-max-considered-
uses

dce guess-branch-probability
if-conversion

delete-null-pointer-checks devirtualize predictive-commoning reorder-blocks-
algorithm=stc

if-conversion2
inline-functions-called-once

devirtualize-speculatively finite-loops tree-partial-pre prefetch-loop-arrays

tree-ter ipa-pure-const align-loops tree-ch gcse inline-functions indirect-inlining tree-loop-distribution
ipa-reference-addressable
merge-constants

inline-small-functions ipa-bit-cp ipa-cp tree-loop-vectorize

move-loop-invariants omit-frame-pointer optimize-strlen partial-inlining ipa-ra tree-slp-vectorize
reorder-blocks dse shrink-wrap-separate isolate-erroneous-paths-dereference unswitch-loops
split-wide-types ssa-backprop ssa-phiopt ipa-icf reorder-blocks-algorithm=stc vect-cost-model
tree-bit-ccp tree-ccp tree-dce shrink-wrap reorder-blocks-and-partition ipa-sra vect-cost-

model=dynamic
tree-copy-prop tree-dominator-opts
tree-dse

lra-remat rerun-cse-after-loop tree-vrp version-loopsor-strides

tree-forwprop tree-fre tree-phiprop
tree-pta

sched-interblock sched-spec
store-merging

split-loops split-paths

tree-scev-cprop tree-sink tree-slsr tree-sra thread-jumps tree-builtin-call-dce
tree-pre

ipa-cp-clone

ipa-profile unit-at-a-time ipa-reference tree-switch-conversion tree-tail-merge peel-loops
tree-coalesce-vars hoist-adjacent-loads peephole2 ipa-vrp

expensive-optimizations strict-aliasing
schedule-insns2 optimize-sibling-calls
reorder-functions schedule-insns
Table 7
Top-5 non-default optimization settings generated from BinTuner [31].

-O0 -fauto-inc-dec -fforward-propagate -fcombine-stack-adjustments -fcompare-elim -fcprop-registers -fdce -fif-conversion2 -fno-delayed-branch
-fdse -fno-defer-pop -fno-merge-constants -fno-guess-branch-probability -ftree-dominator-opts -finline-functions-called-once -fno-ipa-pure-const
-fno-ipa-profile -fipa-reference -fbranch-count-reg -fno-move-loop-invariants -freorder-blocks -fno-shrink-wrap -fsplit-wide-types -ftree-copy-prop
-ftree-bit-ccp -fno-tree-ter -fssa-backprop -fno-tree-coalesce-vars -fipa-cp-clone -ftree-forwprop -ftree-fre -fno-tree-sink -fno-tree-sra -fsplit-paths
-ftree-pta -ftree-ccp -fno-ipa-cp -fno-unit-at-a-time -fno-omit-frame-pointer -ftree-phiprop -fno-tree-ch -ftree-slsr -fpeephole2 -fno-if-conversion
-fno-ssa-phiopt -fno-shrink-wrap-separate -fthread-jumps -fno-align-functions -fno-align-labels -fno-align-loops -fstore-merging -fstrict-aliasing
-fno-caller-saves -fno-crossjumping -fno-cse-follow-jumps -fcse-skip-blocks -fno-delete-null-pointer-checks -fno-devirtualize -fgcse -fno-gcse-lm
-fno-devirtualize-speculatively -fno-expensive-optimizations -fno-hoist-adjacent-loads -finline-small-functions -findirect-inlining -ftree-vectorize
-ftree-dce -fno-peel-loops -fno-isolate-erroneous-paths-dereference -fno-lra-remat -fno-optimize-sibling-calls -fno-optimize-strlen -fpartial-inlining
-fno-ipa-icf -freorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fsched-interblock -fno-sched-spec -ftree-dse -fipa-sra
-fno-schedule-insns -fno-tree-partial-pre -fstrict-overflow -ftree-builtin-call-dce -ftree-switch-conversion -ftree-tail-merge -fno-tree-slp-vectorize
-fno-tree-pre -fno-tree-vrp -fno-ipa-ra -freorder-blocks -fno-schedule-insns2 -fno-code-hoisting -fvect-cost-model -fno-ipa-bit-cp -fno-ipa-vrp
-freorder-blocks-algorithm=simple -finline-functions -fno-unswitch-loops -fno-predictive-commoning -fno-gcse-after-reload -ftree-loop-vectorize
–param early-inlining-insns=295 –param gcse-cost-distance-ratio=52 –param iv-max-considered-uses=661 -fno-tree-loop-distribute-patterns

-O0 -fno-auto-inc-dec -fbranch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fcprop-registers -fdce -fno-defer-pop -ftree-bit-ccp
-fipa-profile -fforward-propagate -fguess-branch-probability -fif-conversion2 -fif-conversion -fno-inline-functions-called-once -fno-ipa-pure-const
-fdse -fno-ipa-reference -fmerge-constants -fno-move-loop-invariants -fno-reorder-blocks -fno-shrink-wrap -fno-split-wide-types -fdelayed-branch
-ftree-ccp -fno-tree-ch -fno-tree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dse -ftree-forwprop -fno-tree-fre -ftree-sink -ftree-slsr -ftree-sra
-ftree-pta -fno-tree-ter -fno-unit-at-a-time -fno-omit-frame-pointer -fcse-skip-blocks -ftree-dominator-opts -fssa-backprop -fno-align-functions
-fno-tree-phiprop -fno-ssa-phiopt -fno-shrink-wrap-separate -fno-thread-jumps -fno-align-labels -fno-align-loops -fcrossjumping -fno-ipa-sra
-fno-caller-saves -fno-cse-follow-jumps -fno-delete-null-pointer-checks -fdevirtualize -fno-devirtualize-speculatively -fno-expensive-optimizations
-fno-gcse -fgcse-lm -fhoist-adjacent-loads -finline-small-functions -ftree-pre -fno-ipa-cp -fipa-icf -fno-reorder-blocks-and-partition -fpeel-loops
-findirect-inlining -fno-isolate-erroneous-paths-dereference -flra-remat -fno-optimize-sibling-calls -foptimize-strlen -fpartial-inlining -fsched-spec
-fno-tree-tail-merg -freorder-functions -frerun-cse-after-loop -fsched-interblock -fschedule-insns -fstrict-aliasing -fno-peephole2 -fstore-merging
-fipa-ra -fno-tree-builtin-call-dce -fno-tree-switch-conversion -fno-strict-overflow -fno-tree-vrp -fno-reorder-blocks -fno-schedule-insns2 -fipa-vrp
-fno-code-hoisting -freorder-blocks-algorithm=simple -fno-ipa-bit-cp -fno-inline-functions -funswitch-loops -fno-gcse-after-reload -fno-split-paths
-fno-tree-partial-pre -ftree-slp-vectorize -ftree-loop-vectorize -ftree-loop-distribute-patterns -ftree-vectorize -fno-vect-cost-model -fipa-cp-clone
-fno-predictive-commoning –param early-inlining-insns=56 –param gcse-cost-distance-ratio=85 –param iv-max-considered-uses=874

-O0 -fno-auto-inc-dec -fno-branch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fno-cprop-registers -fno-dce -fno-defer-pop -fdse
-fno-delayed-branch -fno-forward-propagate -fno-guess-branch-probability -fno-move-loop-invariants -fipa-profile -finline-functions-called-once
-fipa-pure-const -fif-conversion -fno-ipa-reference -fmerge-constants -fno-if-conversion2 -fno-reorder-blocks -fshrink-wrap -fno-split-wide-types
-fno-align-loops -fno-ssa-phiopt -ftree-pta -funit-at-a-time -fno-omit-frame-pointer -fno-tree-phiprop -fno-tree-dominator-opts -fno-ssa-backprop
-fno-devirtualize -ftree-slsr -fshrink-wrap-separate -fno-ipa-cp -falign-functions -fno-align-labels -fno-caller-saves -fno-thread-jumps -fno-ipa-sra

(continued on next page)

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
Table 7 (continued).
-fcrossjumping -ftree-sra -fcse-follow-jumps -fno-cse-skip-blocks -fdelete-null-pointer-checks -fno-devirtualize-speculatively -fno-gcse -fgcse-lm
-fexpensive-optimizations -fno-hoist-adjacent-loads -fno-inline-small-functions -fpartial-inlining -fno-ipa-icf -fisolate-erroneous-paths-dereference
-fno-optimize-sibling-calls -ftree-pre -fno-sched-spec -fno-optimize-strlen -fno-indirect-inlining -fno-peephole2 -fno-reorder-blocks-and-partition
-fno-code-hoisting -ftree-ccp -ftree-ch -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dse -ftree-forwprop -ftree-fre -ftree-sink -fno-tree-ter
-fstore-merging -freorder-blocks-algorithm=simple -fno-ipa-bit-cp -fno-ipa-vrp -finline-functions -fno-tree-partial-pre -fno-predictive-commoning
-fno-tree-vectorize -fpeel-loops -fsplit-paths -fgcse-after-reload -fno-tree-loop-vectorize -fno-tree-loop-distribute-patterns -fno-tree-slp-vectorize
-fno-lra-remat -fno-rerun-cse-after-loop -freorder-functions -fno-strict-aliasing -fno-vect-cost-model -ftree-switch-conversion -fno-strict-overflow
-ftree-builtin-call-dce -fno-tree-tail-merge -ftree-vrp -fno-ipa-ra -fno-schedule-insns -fno-schedule-insns2 -fsched-interblock -fno-reorder-blocks
-fno-ipa-cp-clone -funswitch-loops -fno-tree-bit-ccp –param early-inlining-insns=846 –param gcse-cost-distance-ratio=14

-O3 -fno-auto-inc-dec -fno-branch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fcprop-registers -fno-dce -fno-defer-pop -fno-dse
-fdelayed-branch -fforward-propagate -fguess-branch-probability -fif-conversion2 -fif-conversion -fno-inline-functions-called-once -fipa-profile
-fno-merge-constants -fno-ipa-reference -fno-tree-coalesce-vars -fmove-loop-invariants -fno-tree-copy-prop -fshrink-wrap -fno-split-wide-types
-fno-tree-slsr -freorder-blocks -ftree-bit-ccp -ftree-ccp -fno-tree-pta -fno-tree-dce -ftree-dse -ftree-forwprop -ftree-fre -fno-tree-sink -fno-tree-ch
-falign-labels -ftree-sra -fno-tree-ter -fomit-frame-pointer -ftree-phiprop -fno-tree-dominator-opts -fssa-backprop -fno-ssa-phiopt -fthread-jumps
-funit-at-a-time -fno-ipa-pure-const -fshrink-wrap-separate -falign-functions -fno-align-loops -fcaller-saves -fno-crossjumping -fcse-follow-jumps
-fcse-skip-blocks -fdelete-null-pointer-checks -fdevirtualize -fno-devirtualize-speculatively -fno-expensive-optimizations -fno-gcse -fno-gcse-lm
-fhoist-adjacent-loads -finline-small-functions -findirect-inlining -fno-ipa-cp -fno-ipa-icf -fno-isolate-erroneous-paths-dereference -fno-lra-remat
-fipa-sra -fno-optimize-sibling-calls -foptimize-strlen -fno-partial-inlining -fschedule-insns -freorder-blocks-and-partition -fno-reorder-functions
-ftree-switch-conversion -frerun-cse-after-loop -fno-sched-interblock -fsched-spec -fno-strict-aliasing -fno-strict-overflow -ftree-builtin-call-dce
-fno-peephole2 -ftree-tail-merge -fno-tree-pre -fipa-bit-cp -fno-ipa-ra -freorder-blocks -fschedule-insns2 -fno-code-hoisting -fno-store-merging
-ftree-vrp -freorder-blocks-algorithm=simple -fipa-vrp -fno-inline-functions -fno-predictive-commoning -fgcse-after-reload -ftree-loop-vectorize
-fipa-cp-clone -ftree-loop-distribute-patterns -fno-tree-slp-vectorize -fvect-cost-model -ftree-partial-pre -fpeel-loops -ftree-vectorize -fsplit-paths
-funswitch-loops –param early-inlining-insns=482 –param gcse-cost-distance-ratio=59 –param iv-max-considered-uses=105

-O0 -fno-auto-inc-dec -fno-branch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fcprop-registers -ftree-forwprop -fdelayed-branch
-fipa-profile -fforward-propagate -fguess-branch-probability -fno-if-conversion2 -fif-conversion -fno-inline-functions-called-once -fipa-pure-const
-fno-dce -fipa-reference -fmerge-constants -fmove-loop-invariants -fno-reorder-blocks -fshrink-wrap -fno-split-wide-types -ftree-bit-ccp -ftree-ccp
-fno-tree-pta -fno-tree-coalesce-vars -fno-tree-copy-prop -fno-tree-dce -ftree-dse -ftree-slsr -fcrossjumping -fcaller-saves -fno-tree-sra -ftree-sink
-fdse -fno-tree-ch -fthread-jumps -fno-unit-at-a-time -fomit-frame-pointer -ftree-phiprop -ftree-dominator-opts -fno-ssa-backprop -fno-ssa-phiopt
-fshrink-wrap-separate -fno-gcse -fno-align-functions -falign-labels -fthread-jumps -fno-peephole2 -fno-tree-fre -fcse-follow-jumps -fno-defer-pop
-fno-align-loops -fno-hoist-adjacent-loads -fdelete-null-pointer-checks -fno-devirtualize -fdevirtualize-speculatively -fno-expensive-optimizations
-fno-cse-skip-blocks -fgcse-lm -finline-small-functions -fno-indirect-inlining -fipa-cp -fno-ipa-sra -fipa-icf -fisolate-erroneous-paths-dereference
-fno-lra-remat -fno-optimize-sibling-calls -foptimize-strlen -fno-partial-inlining -fschedule-insns -freorder-blocks-and-partition -fipa-vrp -ftree-ter
-fno-sched-interblock -fno-rerun-cse-after-loop -fno-reorder-functions -fno-sched-spec -fno-strict-aliasing -fno-tree-vrp -fno-tree-builtin-call-dce
-ftree-switch-conversion -fstrict-overflow -ftree-tail-merge -ftree-pre -fno-reorder-blocks -fschedule-insns2 -fno-code-hoisting -fno-peel-loops
-fipa-cp-clone -freorder-blocks-algorithm=simple -fno-ipa-bit-cp -finline-functions -funswitch-loops -fpredictive-commoning -fno-store-merging
-fno-gcse-after-reload -fno-tree-loop-vectorize -fno-tree-loop-distribute-patterns -fno-tree-slp-vectorize -fno-vect-cost-model -ftree-partial-pre
-fipa-ra -fno-split-paths -ftree-vectorize –param early-inlining-insns=798 –param gcse-cost-distance-ratio=46 –param iv-max-considered-uses=617
References

[1] statista, Number of connected IoT devices worldwide, 2020, https://www.
statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/.

[2] S. Cesare, Y. Xiang, W. Zhou, Control flow-based malware variant detection,
IEEE Trans. Dependable Secure Comput. 11 (4) (2013) 307–317, http://dx.doi.
org/10.1109/TDSC.2013.40.

[3] Y. David, N. Partush, E. Yahav, Statistical similarity of binaries, ACM SIGPLAN
Not. 51 (6) (2016) 266–280, http://dx.doi.org/10.1145/2908080.2908126.

[4] Y. Hu, Y. Zhang, J. Li, D. Gu, Cross-architecture binary semantics understanding
via similar code comparison, in: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, SANER, vol. 1, IEEE, 2016,
pp. 57–67, http://dx.doi.org/10.1109/SANER.2016.50.

[5] T. Blazytko, M. Contag, C. Aschermann, T. Holz, Syntia: Synthesizing the
semantics of obfuscated code, in: 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 643–659.

[6] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C.Y. Cho, H.B.K. Tan, Bingo: Cross-
architecture cross-os binary search, in: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 678–689, http://dx.doi.org/10.1145/2950290.2950350.

[7] Y. Hu, Y. Zhang, J. Li, D. Gu, Binary code clone detection across architectures
and compiling configurations, in: 2017 IEEE/ACM 25th International Conference
on Program Comprehension, ICPC, IEEE, 2017, pp. 88–98, http://dx.doi.org/10.
1109/ICPC.2017.22.

[8] Y. David, N. Partush, E. Yahav, Similarity of binaries through re-optimization,
in: Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2017, pp. 79–94, http://dx.doi.org/10.1145/
3062341.3062387.

[9] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, D. Song, Neural network-based graph
embedding for cross-platform binary code similarity detection, in: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 363–376, http://dx.doi.org/10.1145/3133956.3134018.

[10] Y. Duan, X. Li, J. Wang, H. Yin, Deepbindiff: Learning program-wide code
representations for binary diffing, in: Network and Distributed System Security
Symposium, 2020, http://dx.doi.org/10.14722/ndss.2020.24311.

[11] M. Bourquin, A. King, E. Robbins, Binslayer: accurate comparison of binary
executables, in: Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop, 2013, pp. 1–10, http://dx.doi.org/10.1145/
2430553.2430557.
13
[12] S.H. Ding, B.C. Fung, P. Charland, Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler
optimization, in: 2019 IEEE Symposium on Security and Privacy, SP, IEEE, 2019,
pp. 472–489, http://dx.doi.org/10.1109/SP.2019.00003.

[13] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, Z. Zhang, Neural machine translation
inspired binary code similarity comparison beyond function pairs, in: NDSS, The
Internet Society, 2019, http://dx.doi.org/10.14722/ndss.2019.23492.

[14] J. Gao, X. Yang, Y. Fu, Y. Jiang, J. Sun, VulSeeker: A semantic learning
based vulnerability seeker for cross-platform binary, in: 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering, ASE, IEEE, 2018,
pp. 896–899, http://dx.doi.org/10.1145/3238147.3240480.

[15] J. Pewny, F. Schuster, L. Bernhard, T. Holz, C. Rossow, Leveraging semantic
signatures for bug search in binary programs, in: Proceedings of the 30th
Annual Computer Security Applications Conference, 2014, pp. 406–415, http:
//dx.doi.org/10.1145/2664243.2664269.

[16] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, T. Holz, Cross-architecture bug
search in binary executables, in: 2015 IEEE Symposium on Security and Privacy,
IEEE, 2015, pp. 709–724, http://dx.doi.org/10.1109/SP.2015.49.

[17] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, T. Liu, Patch based vulnerability
matching for binary programs, in: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2020, pp. 376–387,
http://dx.doi.org/10.1145/3395363.3397361.

[18] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, H. Yin, Patchscope: Memory object
centric patch diffing, in: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 149–165, http://dx.doi.org/
10.1145/3372297.3423342.

[19] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, F. Song, Spain: security patch analysis
for binaries towards understanding the pain and pills, in: 2017 IEEE/ACM
39th International Conference on Software Engineering, ICSE, IEEE, 2017, pp.
462–472, http://dx.doi.org/10.1109/ICSE.2017.49.

[20] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin, {MutantX-S}: Scalable malware clustering
based on static features, in: 2013 USENIX Annual Technical Conference (USENIX
ATC 13), 2013, pp. 187–198.

[21] J. Jang, D. Brumley, S. Venkataraman, Bitshred: feature hashing malware
for scalable triage and semantic analysis, in: Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011, pp. 309–320,
http://dx.doi.org/10.1145/2046707.2046742.

[22] D. Xu, J. Ming, D. Wu, Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping, in: 2017 IEEE Symposium on Security and
Privacy, SP, IEEE, 2017, pp. 921–937, http://dx.doi.org/10.1109/SP.2017.56.

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
http://dx.doi.org/10.1109/TDSC.2013.40
http://dx.doi.org/10.1109/TDSC.2013.40
http://dx.doi.org/10.1109/TDSC.2013.40
http://dx.doi.org/10.1145/2908080.2908126
http://dx.doi.org/10.1109/SANER.2016.50
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb5
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb5
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb5
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb5
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb5
http://dx.doi.org/10.1145/2950290.2950350
http://dx.doi.org/10.1109/ICPC.2017.22
http://dx.doi.org/10.1109/ICPC.2017.22
http://dx.doi.org/10.1109/ICPC.2017.22
http://dx.doi.org/10.1145/3062341.3062387
http://dx.doi.org/10.1145/3062341.3062387
http://dx.doi.org/10.1145/3062341.3062387
http://dx.doi.org/10.1145/3133956.3134018
http://dx.doi.org/10.14722/ndss.2020.24311
http://dx.doi.org/10.1145/2430553.2430557
http://dx.doi.org/10.1145/2430553.2430557
http://dx.doi.org/10.1145/2430553.2430557
http://dx.doi.org/10.1109/SP.2019.00003
http://dx.doi.org/10.14722/ndss.2019.23492
http://dx.doi.org/10.1145/3238147.3240480
http://dx.doi.org/10.1145/2664243.2664269
http://dx.doi.org/10.1145/2664243.2664269
http://dx.doi.org/10.1145/2664243.2664269
http://dx.doi.org/10.1109/SP.2015.49
http://dx.doi.org/10.1145/3395363.3397361
http://dx.doi.org/10.1145/3372297.3423342
http://dx.doi.org/10.1145/3372297.3423342
http://dx.doi.org/10.1145/3372297.3423342
http://dx.doi.org/10.1109/ICSE.2017.49
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb20
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb20
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb20
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb20
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb20
http://dx.doi.org/10.1145/2046707.2046742
http://dx.doi.org/10.1109/SP.2017.56

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
[23] A. Caliskan, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck, R. Greenstadt, A.
Narayanan, When coding style survives compilation: De-anonymizing program-
mers from executable binaries, 2015, http://dx.doi.org/10.48550/arXiv.1512.
08546, arXiv preprint arXiv:1512.08546.

[24] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, P. Narasimhan,
Binary function clustering using semantic hashes, in: 2012 11th International
Conference on Machine Learning and Applications, 1, IEEE, 2012, pp. 386–391,
http://dx.doi.org/10.1109/ICMLA.2012.70.

[25] Y. Xue, Z. Xu, M. Chandramohan, Y. Liu, Accurate and scalable cross-architecture
cross-os binary code search with emulation, IEEE Trans. Softw. Eng. 45 (11)
(2018) 1125–1149, http://dx.doi.org/10.1109/TSE.2018.2827379.

[26] H. Wang, P. Ma, Y. Yuan, Z. Liu, S. Wang, Q. Tang, S. Nie, S. Wu, Enhancing
DNN-based binary code function search with low-cost equivalence checking, IEEE
Trans. Softw. Eng. (2022) http://dx.doi.org/10.1109/TSE.2022.3149240.

[27] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou, 𝛼Diff: cross-
version binary code similarity detection with dnn, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, 2018,
pp. 667–678, http://dx.doi.org/10.1145/3238147.3238199.

[28] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, C. Zhang, Jtrans:
Jump-aware transformer for binary code similarity detection, in: Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, in: ISSTA 2022, Association for Computing Machinery, New York, NY,
USA, 2022, pp. 1–13, http://dx.doi.org/10.1145/3533767.3534367.

[29] X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, X.
Zhang, Improving binary code similarity transformer models by semantics-driven
instruction deemphasis, in: Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, in: ISSTA 2023, Association for
Computing Machinery, New York, NY, USA, 2023, pp. 1106–1118, http://dx.doi.
org/10.1145/3597926.3598121.

[30] N. Shalev, N. Partush, Binary similarity detection using machine learning, in:
Proceedings of the 13th Workshop on Programming Languages and Analysis for
Security, PLAS ’18, Association for Computing Machinery, New York, NY, USA,
2018, pp. 42–47, http://dx.doi.org/10.1145/3264820.3264821.

[31] X. Ren, M. Ho, J. Ming, Y. Lei, L. Li, Unleashing the hidden power of compiler
optimization on binary code difference: An empirical study, in: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, 2021, pp. 142–157, http://dx.doi.org/10.1145/3453483.
3454035.

[32] C. Linn, S. Debray, Obfuscation of executable code to improve resistance to
static disassembly, in: Proceedings of the 10th ACM Conference on Computer
and Communications Security, 2003, pp. 290–299, http://dx.doi.org/10.1145/
948109.948149.

[33] C. Collberg, S. Martin, J. Myers, J. Nagra, Distributed application tamper
detection via continuous software updates, in: Proceedings of the 28th Annual
Computer Security Applications Conference, 2012, pp. 319–328, http://dx.doi.
org/10.1145/2420950.2420997.

[34] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, A. Pretschner, Code obfuscation
against symbolic execution attacks, in: Proceedings of the 32nd Annual Confer-
ence on Computer Security Applications, 2016, pp. 189–200, http://dx.doi.org/
10.1145/2991079.2991114.

[35] P. Junod, J. Rinaldini, J. Wehrli, J. Michielin, Obfuscator-LLVM–software protec-
tion for the masses, in: 2015 IEEE/ACM 1st International Workshop on Software
Protection, IEEE, 2015, pp. 3–9, http://dx.doi.org/10.1109/SPRO.2015.10.

[36] H. Xu, Y. Zhou, Y. Kang, F. Tu, M. Lyu, Manufacturing resilient bi-opaque
predicates against symbolic execution, in: 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN, IEEE, 2018,
pp. 666–677, http://dx.doi.org/10.1109/DSN.2018.00073.

[37] M. Hammad, J. Garcia, S. Malek, A large-scale empirical study on the effects of
code obfuscations on android apps and anti-malware products, in: Proceedings of
the 40th International Conference on Software Engineering, 2018, pp. 421–431,
http://dx.doi.org/10.1145/3180155.3180228.

[38] H. Wang, S. Wang, D. Xu, X. Zhang, X. Liu, Generating effective software
obfuscation sequences with reinforcement learning, IEEE Trans. Dependable
Secure Comput. (2020) http://dx.doi.org/10.1109/TDSC.2020.3041655.

[39] P. Zhang, C. Wu, M. Peng, K. Zeng, D. Yu, Y. Lai, Y. Kang, W. Wang, Z.
Wang, Khaos: The impact of inter-procedural code obfuscation on binary diffing
techniques, in: Proceedings of the 21st ACM/IEEE International Symposium on
Code Generation and Optimization, 2023, pp. 55–67.

[40] H. Geng, M. Zhong, P. Zhang, F. Lv, X. Feng, OPTango: Multi-central represen-
tation learning against innumerable compiler optimization for binary diffing, in:
2023 IEEE 34th International Symposium on Software Reliability Engineering,
ISSRE, IEEE, 2023, pp. 774–785.

[41] L. Massarelli, G.A.D. Luna, F. Petroni, R. Baldoni, L. Querzoni, Safe: Self-
attentive function embeddings for binary similarity, in: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer,
2019, pp. 309–329, http://dx.doi.org/10.1007/978-3-030-22038-9_15.

[42] zynamics GmbH and Google LLC, BinDiff manual, 2022, http://www.zynamics.
com/bindiff/manual/index.html.
14
[43] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, H. Yin, Scalable graph-based
bug search for firmware images, in: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 480–491,
http://dx.doi.org/10.1145/2976749.2978370.

[44] L. Luo, J. Ming, D. Wu, P. Liu, S. Zhu, Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism
detection, in: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2014, pp. 389–400, http://dx.doi.org/
10.1145/2635868.2635900.

[45] J. Ming, D. Xu, Y. Jiang, D. Wu, {BinSim}: Trace-based semantic binary diffing
via system call sliced segment equivalence checking, in: 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 253–270.

[46] S. Wang, D. Wu, In-memory fuzzing for binary code similarity analysis, in: 2017
32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE, IEEE, 2017, pp. 319–330, http://dx.doi.org/10.1109/ASE.2017.8115645.

[47] C. Nachenberg, Computer virus-antivirus coevolution, Commun. ACM 40 (1)
(1997) 46–51, http://dx.doi.org/10.1145/242857.242869.

[48] K.A. Roundy, B.P. Miller, Binary-code obfuscations in prevalent packer tools,
ACM Comput. Surv. 46 (1) (2013) 1–32, http://dx.doi.org/10.1145/2522968.
2522972.

[49] M.F.X.J. Oberhumer, L. Molnár, J.F. Reiser, The ultimate packer for eXecutables,
2022, https://upx.github.io/.

[50] Oreans Technologies, Themida overview, 2022, https://www.oreans.com/
themida.php.

[51] Z. Tang, K. Kuang, L. Wang, C. Xue, X. Gong, X. Chen, D. Fang, J. Liu,
Z. Wang, SEEAD: A semantic-based approach for automatic binary code de-
obfuscation, in: 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 261–268, http:
//dx.doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.246.

[52] M. Egele, T. Scholte, E. Kirda, C. Kruegel, A survey on automated dynamic
malware-analysis techniques and tools, ACM Comput. Surv. (CSUR) 44 (2) (2008)
1–42, http://dx.doi.org/10.1145/2089125.2089126.

[53] A. Dinaburg, P. Royal, M. Sharif, W. Lee, Ether: malware analysis via hardware
virtualization extensions, in: Proceedings of the 15th ACM Conference on
Computer and Communications Security, 2008, pp. 51–62, http://dx.doi.org/10.
1145/1455770.1455779.

[54] M. Sharif, A. Lanzi, J. Giffin, W. Lee, Automatic reverse engineering of malware
emulators, in: 2009 30th IEEE Symposium on Security and Privacy, IEEE, 2009,
pp. 94–109, http://dx.doi.org/10.1109/SP.2009.27.

[55] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, P.G. Bringas, SoK: Deep packer
inspection: A longitudinal study of the complexity of run-time packers, in:
2015 IEEE Symposium on Security and Privacy, IEEE, 2015, pp. 659–673,
http://dx.doi.org/10.1109/SP.2015.46.

[56] H. Wang, P. Ma, S. Wang, Q. Tang, S. Nie, S. Wu, Sem2vec: Semantics-aware
assembly tracelet embedding, ACM Trans. Softw. Eng. Methodol. 32 (4) (2023)
http://dx.doi.org/10.1145/3569933.

[57] Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu, K. Lu, VulHawk:
Cross-architecture vulnerability detection with entropy-based binary code search,
in: NDSS, 2023.

[58] D. Kim, E. Kim, S.K. Cha, S. Son, Y. Kim, Revisiting binary code similarity
analysis using interpretable feature engineering and lessons learned, IEEE Trans.
Softw. Eng. (2022) 1–23, http://dx.doi.org/10.1109/TSE.2022.3187689.

[59] X. Xu, Q. Zheng, Z. Yan, M. Fan, A. Jia, T. Liu, Interpretation-enabled software
reuse detection based on a multi-level birthmark model, in: 2021 IEEE/ACM
43rd International Conference on Software Engineering, ICSE, IEEE, 2021, pp.
873–884, http://dx.doi.org/10.1109/ICSE43902.2021.00084.

[60] S. Yang, L. Cheng, Y. Zeng, Z. Lang, H. Zhu, Z. Shi, Asteria: Deep learning-
based AST-encoding for cross-platform binary code similarity detection, in: 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN, IEEE, 2021, pp. 224–236.

[61] Y. David, N. Partush, E. Yahav, Firmup: Precise static detection of common
vulnerabilities in firmware, ACM SIGPLAN Not. 53 (2) (2018) 392–404, http:
//dx.doi.org/10.1145/3173162.3177157.

[62] H. Huang, A.M. Youssef, M. Debbabi, Binsequence: Fast, accurate and scalable
binary code reuse detection, in: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, 2017, pp. 155–166, http://dx.doi.
org/10.1145/3052973.3052974.

[63] M. Ollivier, S. Bardin, R. Bonichon, J.-Y. Marion, How to kill symbolic deob-
fuscation for free (or: unleashing the potential of path-oriented protections),
in: Proceedings of the 35th Annual Computer Security Applications Conference,
2019, pp. 177–189, http://dx.doi.org/10.1145/3359789.3359812.

[64] S. Eschweiler, K. Yakdan, E. Gerhards-Padilla, discovRE: Efficient cross-
architecture identification of bugs in binary code, in: NDSS, vol. 52, 2016, pp.
58–79, http://dx.doi.org/10.14722/ndss.2016.23185.

[65] S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, Fossil: a resilient and efficient
system for identifying foss functions in malware binaries, ACM Trans. Priv. Secur.
21 (2) (2018) 1–34, http://dx.doi.org/10.1145/3175492.

[66] Y. David, E. Yahav, Tracelet-based code search in executables, ACM SIGPLAN
Not. 49 (6) (2014) 349–360, http://dx.doi.org/10.1145/2594291.2594343.

http://dx.doi.org/10.48550/arXiv.1512.08546
http://dx.doi.org/10.48550/arXiv.1512.08546
http://dx.doi.org/10.48550/arXiv.1512.08546
http://arxiv.org/abs/1512.08546
http://dx.doi.org/10.1109/ICMLA.2012.70
http://dx.doi.org/10.1109/TSE.2018.2827379
http://dx.doi.org/10.1109/TSE.2022.3149240
http://dx.doi.org/10.1145/3238147.3238199
http://dx.doi.org/10.1145/3533767.3534367
http://dx.doi.org/10.1145/3597926.3598121
http://dx.doi.org/10.1145/3597926.3598121
http://dx.doi.org/10.1145/3597926.3598121
http://dx.doi.org/10.1145/3264820.3264821
http://dx.doi.org/10.1145/3453483.3454035
http://dx.doi.org/10.1145/3453483.3454035
http://dx.doi.org/10.1145/3453483.3454035
http://dx.doi.org/10.1145/948109.948149
http://dx.doi.org/10.1145/948109.948149
http://dx.doi.org/10.1145/948109.948149
http://dx.doi.org/10.1145/2420950.2420997
http://dx.doi.org/10.1145/2420950.2420997
http://dx.doi.org/10.1145/2420950.2420997
http://dx.doi.org/10.1145/2991079.2991114
http://dx.doi.org/10.1145/2991079.2991114
http://dx.doi.org/10.1145/2991079.2991114
http://dx.doi.org/10.1109/SPRO.2015.10
http://dx.doi.org/10.1109/DSN.2018.00073
http://dx.doi.org/10.1145/3180155.3180228
http://dx.doi.org/10.1109/TDSC.2020.3041655
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb39
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb40
http://dx.doi.org/10.1007/978-3-030-22038-9_15
http://www.zynamics.com/bindiff/manual/index.html
http://www.zynamics.com/bindiff/manual/index.html
http://www.zynamics.com/bindiff/manual/index.html
http://dx.doi.org/10.1145/2976749.2978370
http://dx.doi.org/10.1145/2635868.2635900
http://dx.doi.org/10.1145/2635868.2635900
http://dx.doi.org/10.1145/2635868.2635900
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb45
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb45
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb45
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb45
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb45
http://dx.doi.org/10.1109/ASE.2017.8115645
http://dx.doi.org/10.1145/242857.242869
http://dx.doi.org/10.1145/2522968.2522972
http://dx.doi.org/10.1145/2522968.2522972
http://dx.doi.org/10.1145/2522968.2522972
https://upx.github.io/
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
http://dx.doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.246
http://dx.doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.246
http://dx.doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.246
http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.1145/1455770.1455779
http://dx.doi.org/10.1145/1455770.1455779
http://dx.doi.org/10.1145/1455770.1455779
http://dx.doi.org/10.1109/SP.2009.27
http://dx.doi.org/10.1109/SP.2015.46
http://dx.doi.org/10.1145/3569933
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb57
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb57
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb57
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb57
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb57
http://dx.doi.org/10.1109/TSE.2022.3187689
http://dx.doi.org/10.1109/ICSE43902.2021.00084
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb60
http://dx.doi.org/10.1145/3173162.3177157
http://dx.doi.org/10.1145/3173162.3177157
http://dx.doi.org/10.1145/3173162.3177157
http://dx.doi.org/10.1145/3052973.3052974
http://dx.doi.org/10.1145/3052973.3052974
http://dx.doi.org/10.1145/3052973.3052974
http://dx.doi.org/10.1145/3359789.3359812
http://dx.doi.org/10.14722/ndss.2016.23185
http://dx.doi.org/10.1145/3175492
http://dx.doi.org/10.1145/2594291.2594343

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100163P. Zhang et al.
[67] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, H. Yin, Extracting
conditional formulas for cross-platform bug search, in: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, 2017, pp.
346–359, http://dx.doi.org/10.1145/3052973.3052995.

[68] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, D. Gu, Binmatch: A semantics-based
hybrid approach on binary code clone analysis, in: 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME, IEEE, 2018, pp.
104–114, http://dx.doi.org/10.1109/ICSME.2018.00019.
15
[69] Y. Liu, H. Wang, Tracking mirai variants, Virus Bull. (2018) 1–18.
[70] D. Kim, E. Kim, S.K. Cha, S. Son, Y. Kim, Revisiting binary code similarity

analysis using interpretable feature engineering and lessons learned, IEEE Trans.
Softw. Eng. (2022).

http://dx.doi.org/10.1145/3052973.3052995
http://dx.doi.org/10.1109/ICSME.2018.00019
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb69
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb70
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb70
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb70
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb70
http://refhub.elsevier.com/S2772-4859(24)00015-2/sb70

	BinCodex: A comprehensive and multi-level dataset for evaluating binary code similarity detection techniques
	Introduction
	Background and Motivation
	Binary Code Similarity Detection
	Code transformation
	Compiler Optimization
	Software Obfuscation

	Motivation

	Methodology
	Challenges
	The BinCodex Dataset
	Workflow of BinCodex

	Implementation and Evaluation
	Adaptability to Default Compiler Options
	Adaptability to Non-default Compiler Options
	Adaptability to Code Obfuscation
	The Ability to search Vulnerable Code

	Related Works
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix
	References

