
Shining Light on the Inter-procedural Code Obfuscation: Keep Pace

with Progress in Binary Difing∗

PEIHUA ZHANG, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

and WeChat, Tencent, Beijing, China

CHENGGANG WU23, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing,

China, University of the Chinese Academy of Sciences, Beijing, China, and Zhongguancun Laboratory, Beijing,

China

HANZHI HU2, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

and Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

LICHEN JIA, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China and Uni-

versity of the Chinese Academy of Sciences, Beijing, China

MINGFAN PENG2, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

and University of the Chinese Academy of Sciences, Beijing, China

JIALI XU, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

MENGYAO XIE, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

YUANMING LAI2, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

and University of the Chinese Academy of Sciences, Beijing, China

YAN KANG2, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China and Uni-

versity of the Chinese Academy of Sciences, Beijing, China

ZHE WANG23ğ, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China, Uni-

versity of the Chinese Academy of Sciences, Beijing, China, and Zhongguancun Laboratory, Beijing, China

∗Extension of conference paper: An earlier version was presented at CGO 2023 [69]. We do further study and extend the conference paper

in several directions: 1. Combined with the new observation of binary diing works that pay more and more attention to the control low

semantics, we propose a new obfuscation primitive called hidden, which utilizes the exception-handling mechanism to conceal the control

low (Section ğ3.4). 2. We provide guidelines on selecting and combining the primitives to achieve a higher level of obfuscation while

minimizing runtime overhead (Section ğ3.5). 3. We introduced 11 binary diing works including intra-procedural and inter-procedural diing.

Our results demonstrate that the enhanced approach improves performance and exhibits higher eiciency (Section ğ5.2). Additionally, we

conducted experiments to collect internal information, providing further evidence of the efectiveness (Section ğ5.5). 4. To gain insights into

the impact of actively utilizing compiler optimization in obfuscation, we compare KHaos with BinTuner [52]. This comparative study reveals

distinguishing factors and presents new observations (Section ğ5.4).
2also with University of Chinese Academy of Sciences.
3also with Zhongguancun Laboratory.
ğis the corresponding author.

Authors’ Contact Information: Peihua Zhang, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

and WeChat, Tencent, Beijing, Beijing, China; e-mail: zhangpeihua@ict.ac.cn; Chenggang Wu, SKLP, Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China and University of the Chinese Academy of Sciences, Beijing, Beijing, China and Zhongguancun

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on

the irst page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1544-3973/2024/10-ART

https://doi.org/10.1145/3701992

ACM Trans. Arch. Code Optim.

HTTPS://ORCID.ORG/0000-0001-9421-0380
HTTPS://ORCID.ORG/0000-0003-1777-8110
HTTPS://ORCID.ORG/0009-0000-6253-9106
HTTPS://ORCID.ORG/0009-0006-4974-6446
HTTPS://ORCID.ORG/0000-0003-0640-3997
HTTPS://ORCID.ORG/0000-0001-7003-1257
HTTPS://ORCID.ORG/0000-0002-8511-1118
HTTPS://ORCID.ORG/0000-0001-5885-0858
HTTPS://ORCID.ORG/0000-0002-3439-551X
HTTPS://ORCID.ORG/0000-0003-4719-1804
https://orcid.org/0000-0001-9421-0380
https://orcid.org/0000-0003-1777-8110
https://doi.org/10.1145/3701992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701992&domain=pdf&date_stamp=2024-10-28

2 • P. Zhang et al.

Software obfuscation techniques have lost their efectiveness due to the rapid development of binary diing techniques, which

can achieve accurate function matching and identiication. In this paper, we propose a new inter-procedural code obfuscation

mechanism KHaos
1, which moves the code across functions to obfuscate the function by using compilation optimizations.

Three obfuscation primitives are proposed to separate, aggregate, and hide the function. They can be combined to enhance

the obfuscation efect further. This paper also reveals distinguishing factors on obfuscation and compiler optimization and

presents novel observations to gain insights into the impact of actively utilizing compiler optimization in obfuscation. A

prototype of KHaos is implemented and evaluated on a large number of real-world programs. Experimental results show that

KHaos outperforms existing code obfuscations and can signiicantly reduce the accuracy rates of six state-of-the-art binary

diing techniques with lower runtime overhead.

CCS Concepts: · Security and privacy→ Software and application security.

Additional Key Words and Phrases: Software Protection, Obfuscation, Binary Diing

1 Introduction

Embedded devices, including wearables, traic lights, and autonomous driving vision sensors, have become
ubiquitous in modern life. Unfortunately, their disclosure of vulnerabilities has also been increasing, leading to a
corresponding rise in attacks. Exploiting a vulnerability in them can have severe consequences, ranging from
the collapse of critical network infrastructure to life-threatening situations in the case of medical devices like
pacemakers.

The vulnerabilities can be attributed not only to the writing of lawed code but also to the reuse of vulnerable
code. This practice signiicantly contributes to the widespread presence of vulnerabilities in embedded devices [10,
41, 47]. However, addressing these vulnerabilities is challenging due to fragmentary issues. The fast-paced
replacement results in similar code being present across multiple versions of various products, making timely
patching diicult [62].

The above problem favors attackers to detect existing vulnerabilities instead of exploring 0-day vulnerabilities
laboriously. Since most embedded device software is not open source, attackers usually utilize the binary diing
techniques [5, 8, 13, 16, 17, 22, 28, 38, 50, 59, 67, 71, 72] to locate the reused vulnerable code by comparing the
binary with the third-party code. With the introduction of deep learning, binary diing techniques have made
great progress. For example, David et al. [14] searched for common vulnerabilities in common devices, and were
able to locate 373 existing vulnerabilities. The method designed by Feng et al. [21] can achieve a 10,000-level
diing in less than 1 second. In this scenario, it is particularly important to protect the software security of
embedded devices by countering the binary diing technique.

Software obfuscation techniques [3, 9, 26, 32, 60, 64] can transform the code to change the binary. They could
be used against binary diing techniques, preventing attackers from locating existing vulnerabilities. However,
recent research has shown they are no longer efective against the SOTA binary diing techniques [16, 40, 45, 61].

1https://github.com/Khaos2022/Khaos-master

Laboratory, Beijing, China; e-mail: wucg@ict.ac.cn; Hanzhi Hu, SKLP, Institute of Computing Technology Chinese Academy of Sciences,

Beijing, China and Institute of Computing Technology Chinese Academy of Sciences, Beijing, Beijing, China; e-mail: huhanzhi22s@ict.ac.cn;

Lichen Jia, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China and University of the Chinese Academy

of Sciences, Beijing, China; e-mail: lcjia457@gmail.com; Mingfan Peng, SKLP, Institute of Computing Technology Chinese Academy of

Sciences, Beijing, China and University of the Chinese Academy of Sciences, Beijing, China; e-mail: pengmingfan20g@ict.ac.cn; Jiali Xu,

SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China; e-mail: zoecur3@gmail.com; Mengyao Xie, SKLP,

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China; e-mail: xiemengyao@ict.ac.cn; Yuanming Lai, SKLP,

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China and University of the Chinese Academy of Sciences, Beijing,

Beijing, China; e-mail: laiyuanming@ict.ac.cn; Yan Kang, SKLP, Institute of Computing Technology Chinese Academy of Sciences, Beijing,

China and University of the Chinese Academy of Sciences, Beijing, Beijing, China; e-mail: kangyan@ict.ac.cn; Zhe Wang, SKLP, Institute of

Computing Technology Chinese Academy of Sciences, Beijing, China and University of the Chinese Academy of Sciences, Beijing, China and

Zhongguancun Laboratory, Beijing, China; e-mail: wangzhe12@ict.ac.cn.

ACM Trans. Arch. Code Optim.

https://orcid.org/0009-0000-6253-9106
https://orcid.org/0009-0006-4974-6446
https://orcid.org/0000-0003-0640-3997
https://orcid.org/0000-0001-7003-1257
https://orcid.org/0000-0002-8511-1118
https://orcid.org/0000-0001-5885-0858
https://orcid.org/0000-0002-3439-551X
https://orcid.org/0000-0003-4719-1804

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 3

The main reason is that most software obfuscation techniques focus on intra-procedural obfuscation, which
does not fundamentally change the semantics of functions, while binary diing techniques can more and more
accurately extract features within functions to obtain their semantics. Based on the above observations, we argue
that inter-procedural code obfuscation should be emphasized due to its ability to change function semantics.
To this end, we propose an inter-procedural obfuscation technique, KHaos, which moves the code across

functions and utilizes the compiler’s optimizations to transform (obfuscate) the code. The core idea of KHaos
is that once the code is restructured among functions, the generated binary code after compilation optimizations

can be very diferent. To achieve the inter-procedural code obfuscation, KHaos changes function code across
functions by separating a function into sub-functions, aggregating functions into one, and hiding control low
inside/outside functions.

It is non-trivial to transform arbitrary functions due to the challenges posed by performance, correctness, and
obfuscation efects. For example, 1) To balance the obfuscation efect with the performance, choosing which
code blocks within a function to be separated is a problem; 2) Rebuilding all control low and data low among
functions after aggregation is diicult; 3) Hiding control lows efectively without bringing too much overhead is
diicult. To address these challenges, three obfuscation primitives are proposed in KHaosÐ ission, fusion, and
hidden.
The ission partitions the code region to a sub-function with the dominator tree as the granularity and also

combines the static cold/hot code analysis technique to lower performance overhead. Since the deine-use
relationships of variables are changed from within a function to cross functions, it needs to rebuild the data low
by passing parameters. To minimize the performance degradation caused by parameter passing, we also propose
a data-low reduction mechanism to reduce the number of parameters of the sub-functions. The control low
is also rebuilt by inserting the function calls that call to sub-functions and encoding the return values in the
sub-function.
The fusion aggregates functions with compatible return values and merges their parameter lists. To avoid

the ineicient way of stack passing parameters, we propose a compression mechanism to reduce the number of
parameters. To rebuild the control low completely, we propose a tagged pointer mechanism, which attaches
control bits on function pointers to decide the executed code when the aggregated functions are called indirectly.
To further improve the obfuscation efect, the deep fusion method is proposed to merge innocuous basic blocks,
whose execution does not afect the global memory state, from diferent functions together within the aggregated
function.

The hidden utilizes the exception-handling mechanism to hide control lows. The exception-handling mecha-
nism is a key feature of C++ that developers can capture actively or passively generated exceptions in the try
block by writing the catch statements. It requires the cooperation of the system ABI and the exception-handling
runtime library. They select the appropriate handling code to execute by searching the exception-handling
information recorded in the binary. We hide the program’s control low by transforming direct jump into a
throw-and-catch relationship, which becomes a lookup-based indirect control low. To further hide indirect
control low, we propose a code dealer to randomly send the hidden code to other functions at compile-time. We
also propose complementary methods for C programs.

KHaos was implemented based on the LLVM framework. The experimental evaluations were conducted on
the Linux/X86_64 platform using SPEC CPU 2006 & 2017 C/C++ programs, CoreUtils, and 5 common embedded
device software containing vulnerabilities. Eleven SOTA binary diing tools [16ś18, 23, 43, 49, 56, 59, 63, 65, 73]
were used to evaluate the efectiveness of KHaos. The results show that KHaos is not only efective but also
eicient: the efectiveness experiments show that the accuracy of these binary diing tools was reduced to be
less than 19%, and the ranking of the vulnerable functions decreased signiicantly; the performance experiments
show that KHaos incurs less than 7% overhead on average. In summary, our contributions can be outlined as
follows:

ACM Trans. Arch. Code Optim.

4 • P. Zhang et al.

• An inter-procedural obfuscationmechanism.We recognize the importance of inter-procedural obfuscation
in countering binary diing techniques. To address this need, we introduce an obfuscation mechanism called
KHaos, which obfuscates code across functions.

• The three complementary primitives.Within KHaos, we propose three obfuscation primitives to facilitate
the movement and concealment. These primitives include ission, which divides a function into multiple
functions; fusion, which combines multiple functions into one; and hidden, which leverages the exception
mechanism to hide the control low.

• New insights from implementation and evaluation.We have developed and evaluated a prototype of
KHaos, and the results show that it outperforms the existing obfuscators against the SOTA binary diing
techniques. Our study suggests that binary diing techniques should focus more on the inter-procedural code
features.

• New observation on compiler optimization regarding obfuscation. Code obfuscation needs to combat
compiler optimizations so as not to generate the same binary code, while the compiler itself can achieve a
limited obfuscation efect due to its pattern-relative nature, our research suggests that a more efective way is
to obfuscate the program in a compiler-comply manner, leveraging the compiler to enhance the obfuscation
efect.

2 Background and Motivation

2.1 Binary Difing

Binary diing is a technique for visualizing and identifying diferences between binaries. It can quantitatively
measure the diferences and give matching results at predeined granularity (e.g., function). It has been widely
used in software vulnerability search, security patch analysis, malware detection, code clone detection, etc. There
are two kinds of binary diing works [17], traditional approaches, and learning-based approaches.

• Traditional methods match binaries by counting speciic statistical information, such as the aforementioned
BinDif [73]. To deal with cross-compiler/architecture scenarios, many works [8, 28, 40, 45, 50, 61, 67] try to
extract semantic-level features as the code snippet’s identity, such as using I/O syntax [8] to describe a basic
block.

• Recently, many works tried to adopt machine learning to perform the diing [16, 17, 22, 38, 59, 68, 72]. For
example, Asm2Vec [16] regards assembly language as a special language, abstracts each element (opcode,
operands) in the program as tokens in the natural language, and generates the representation of each token
through training and clustering.

2.2 Sotware Obfuscation

Software obfuscation transforms the program without changing its functionality to make it hard to analyze.
There is an arms race between software obfuscation and binary diing. Software obfuscation does not want
binary diing techniques to match un-obfuscated with obfuscated code successfully, and vice versa. There have
been various techniques proposed in software obfuscation, which can be classiied into data obfuscation, static
code rewriting, and dynamic code rewriting [54].

Data obfuscation techniques transform the data format to prevent it from matching. For example, variables like
arrays can be shuled and split into several parts, which can be used to hide the secret. Since most binary diing
techniques utilize the features of the code, obfuscating data is less efective, and we leave it as an orthogonal
technique.

Various dynamic code rewriting approaches follow the concept of packing [46]. However, these techniques are
easy to automatically unpack [48] or be memory-dumped [58], which would lose the efect of obfuscation. Code

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 5

virtualization is another popular obfuscation technique [34]. It translates code into speciic representations and
then uses an engine to interpret them at runtime. This technique sacriices much performance (10x slowdown [34])
in exchange for a more powerful obfuscation. Therefore, the dynamic code rewriting technique is not suitable for
ighting against binary diing due to less efectiveness or too much overhead.
In contrast, static code rewriting is a promising technique against binary diing. It modiies program code

during obfuscation without further runtime modiications, which is similar to compiler optimization. Researchers
have proposed many techniques for static code rewriting. For ease of introduction, we categorize them by
obfuscation granularity:
Instruction level: Instruction substitution [9, 32] replaces the original instruction with equivalent instruc-

tion(s), such as replacing an ładdž with two łsubž. O-LLVM [32] designed 10 diferent strategies for arithmetic and
logical operations. To increase the complexity of the conditional branch, opaque predicate techniques [9, 32, 64]
were proposed. They add permanent true or false (e.g., �2 != -1) conditions that do not afect the original control
low, which is frequently used against analytical techniques such as symbolic execution.

Basic block level: Bogus control low [9, 32] inserts dead code into the original control low and often utilizes
opaque predicates to prevent these codes from being optimized away and executed, thereby ensuring the original
functionality of the program.

Function level: Control low lattening [9, 32] converts the control low of the function into the łswitch-casež
form, which is hard to analyze, and maintains the original jump relationship by controlling the values of the
cases. To prevent being degraded back to the original control low, the łcasež relationship is also obfuscated
(encrypted).

In terms of binary diing, compared with static code obfuscation, dynamic code rewriting(e.g., code virtualiza-
tion) may achieve a similar or even stronger adversarial efect. However, it often requires an additional interpreter
program and brings high runtime overhead, thus resulting in limited scenarios. Packing, as a special kind of
obfuscation, can be automatically unpacked or memory-dumped[58], which would lose the efect of obfuscation.
In comparison, static code obfuscation is more natural and efect-preserved.

2.3 Motivation

Since code obfuscation is a common source contributing to binary code diferences, testing the resilience against
obfuscation has become a common evaluation step for binary diing [16, 40, 61]. From their evaluation, obfuscation
techniques with intra-procedural granularity(e.g., statement, basic block, function) have failed in this arm race [16].
The reason is that intra-procedural obfuscation techniques do not fundamentally change the semantics of each
function. With the continuous improvement of binary diing techniques in feature extraction and binary code
representation, especially with the application of deep learning, their ability to capture the semantics is becoming
increasingly more robust so the efect of intra-procedural obfuscation is gradually weakening.

Therefore, we argue that inter-procedural code obfuscations should be emphasized due to their ability to change

function semantics which is the key to defeating binary diing. Our thinking is also hinted by the literature
published from both the ofensive and defensive sides: 1) most of the binary diing works have discussed the
issues of function inline [2, 5, 8, 13, 15, 16, 19ś21, 27ś30, 40, 66], and many of them [2, 14, 15, 19ś21, 28ś30, 66]
admitted that it would afect the accuracy of diing; 2) BinTuner [52] found the function inline could reduce the
diing accuracy by approximately 10%.

3 Our Solution: KHaos

3.1 Overview

To achieve the inter-procedural obfuscation, KHaos changes the amount of code within a function by moving
code across functions irst and then utilizes the compiler’s optimizations to transform (obfuscate) the code. The

ACM Trans. Arch. Code Optim.

6 • P. Zhang et al.

cal

1

4

3

5

9

8

6

2

log

original

7

int cal_file(char *file_name) {

int fd = -1, n = 0, value = 0;

char buffer[130];

if (file_name) {

log(file_name);

fd = open(file_name, …);

if(fd == -1) return -1;

} // other checks omitted

while (n = read(fd, buffer, 128))

value += cal(buffer, n);

close(fd);

return value;

}
log

fission
fusion

sepFunc-1

2

d

3

1

4

c

9

a

b

remFunc-1

sepFunc-2

5

8

6

7

1

4

c

9

a

b

remFunc-1

fusFunc-1

log

e

5

8

6

7hidFunc-1

2

direct control flow callbasic blockfunction

origin1

2

3

4

5

6

7

8

9

10

11

12

13 hidden
indirect control flow

cal

cal
d

3

Fig. 1. An example of obfuscating a function by using KHaos.

ission primitive separates a function into multiple sub-functions thus making the function thinner. The fusion
primitive aggregates functions into one thus making the function fatter. The hidden primitive hides the function’s
control low and call relationship.

For the convenience of discussion, we denote a function before the transformation as an oriFunc, and the new
function formed after the fusion as the fusFunc. The new function formed by the separated code during the
ission is denoted as the sepFunc, and the function formed by the remaining code is denoted as the remFunc.
The function processed after the hidden as the hidFunc. In Fig. 1, an example is presented to illustrate how
KHaos performs transformations on the cal_file(), which determines the number of special characters in a
given ile. It begins by examining the ile name and opening the ile (lines 4-7), followed by reading its content
and counting the occurrences of special characters (lines 9-11).
Fission split the function into three functions: sepFunc-1 contains basic block 2○ and 3○, and sepFunc-2

contains basic block 5○ to 8○. Trampolines (a○ b○ c○) are inserted in remFunc-1 to ensure correctness. Basic block
(d○) is utilized to return diferent values for sepFunc-1 (detailed in ğ3.2).

Fusion merges the log() function and sepFunc-2 into fusFunc-1. An entry basic block (e○) is introduced to
select the aggregated code blocks. To enable deeper code aggregation, we propose a deep fusion method that
combines basic blocks from distinct function bodies. Once fusFunc-1 is generated, the fusion process adjusts the
references of log() and sepFunc-2 to fusFunc-1.
To address the challenge of łstubbornž control lows that may persist after the use of the aforementioned

primitives, we employ the hidden primitive, which focuses on transforming direct control lows into indirect ones.
For example, we replace the branch statement with a throw statement at the end of basic block 2○ in sepFunc-1.
Subsequently, catch statements are added in the following basic blocks (d○ and 3○). By utilizing exceptions and
the associated catch statements, we achieve an indirect control low while preserving the intended functionality
of the code. Furthermore, we extend our proposal to include equivalent hiding methods for the C language and
call statements. These methods are discussed in detail in ğ3.4. Lastly, to further break the boundary of hidFunc-1
with other functions, we divide the hidden code (d○ and 3○) into diferent functions. This step ensures that the
control low is distributed across multiple functions, contributing to the overall obfuscation and making it more
challenging to analyze the program structure.

Changing functions by recombining basic blocks from diferent functions is not trivial, and it still faces several
challenges in performance, correctness, and obfuscation.

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 7

• Challenge-1: Choosing which basic blocks (or functions, control lows) to be obfuscated will seriously afect
the performance overhead and obfuscation efect, and how to balance them well is diicult. For example,
separating each basic block as a sepFunc would favor the obfuscation, but bring unacceptable overhead.

• Challenge-2: How to completely rebuild all control low and data low among functions after transformation
(especially the fusion) is diicult. For example, once several functions participate in the fusion, we need to
handle all pointers of the oriFuncs so that it can correctly jump to the fusFunc when de-referenced.

• Challenge-3: The hidden codes remain in the original function after the throw-catch process, which does
not break the function boundary, it is challenging to escape them into other functions without changing the
compiler architecture or inluencing the program’s original functionalities. Besides, though C provides an
exception-handling mechanism via library functions (setjmp()/longjmp()), it brings patterns unavoidably, how
to achieve a similar hiding efect as C++ while avoiding introducing new patterns is also challenging.

The following subsections detail the three primitives’ design and address the above challenges.

3.2 The Fission Primitive

Fission focuses on the inside of every function and is mainly divided into 3 steps: (1)region identifying; (2)data
low and control low rebuild; and (3)function-speciic data-low reduction.

3.2.1 Partitioning Regions to Form sepFunc. In general, a function’s property is a single entry and multiple exits.
Hence, as long as a certain code region satisies this property, it can be separated to become a new function. More
precisely, as long as a code region is a dominator tree in the control low graph, it can be extracted into a sepFunc.
The ission creates call relationships among sepFuncs and remFunc to ensure correctness. If the ission generates
too many sepFuncs, the newly created function calls in remFunc will bring additional overhead (especially new
function calls inside a loop). However, if the number or size of the sepFuncs is small, the oriFunc cannot be
signiicantly changed. Therefore, designing a reasonable region identiication algorithm is the key to reducing
the overhead and improving the obfuscation efect.
The region identifying algorithm. We abstract the code region partitioning problem as a graph-cutting

problem. The function’s control low graph can be regarded as a directed graph, and the edge weight represents
the frequency of execution which indicates the cold/hot information. Partitioning the code region can be regarded
as cutting the graph, where the weight of the cut edge is the cost of performance and the obfuscation efect is the
number of the nodes in the sub-graph. Based on the above idea, we design the region-identifying algorithm on
top of the directed weighted graph cut algorithm [57] to balance the performance overhead and the obfuscation
efect. The algorithm takes function code as input and performs dominator tree analysis [36] at irst. To avoid
separating the whole function body into a sepFunc, we remove the dominator tree of the function itself and
identify the regions from the rest of the trees. To indicate the efect of ission on obfuscation, we use the number
of basic blocks in the tree to represent it. To indicate the efect of the ission on performance, we use the execution
frequency of the root node of the dominator tree by using block frequency analysis [39] and the loop count (if
the region is in a loop, the call to sepFunc will increase) as the cost of the cut. We iteratively select the most
cost-efective (i.e., maximum ratio of efect and cost) dominator tree to separate until the tree set is empty.

3.2.2 Data-flow Rebuild. In addition to identifying regions as the function bodies of sepFuncs, we also need to
identify the inputs and the outputs of these regions to construct the parameters and the return value of sepFuncs.
For each variable used in a region, it should be input if its point is outside the region; Similarly, for each variable
deined in a region, it should be output if it has a use point outside the region. For example, as shown in Fig. 2,
the fd and n variables are inputs because the deined points are outside the region, and the value variable has
a use point outside the region, so it is an output. For the variables whose deine-use relationships are across

ACM Trans. Arch. Code Optim.

8 • P. Zhang et al.

BB1

BB4

BB3

BB5

BB8

BB6

BB7

BB2

BB9

exit 0

exit 1

value += cal(...)

return value

n = read(fd, …)

int fd = -1, n = 0

define

use

region-1

region-2

control flow

data flow

basic block

region to split

statement

Fig. 2. The control-flow and data-flow graphs of cal_file() in Fig. 1

regions, we use the function parameters to pass the pointer to them. We don’t pass a region’s output variables by
using the return value of sepFunc because a region may have multiple output variables.

Data-low reduction. In general, the local variables of a function are deined at the entry basic block. Therefore,
if an identiied region needs to use local variables, these variables need to be passed into the sepFunc through
parameters. In fact, if some local variables are only used by a sepFunc, then these variables do not need to be
passed into the sepFunc, they can be deined directly in the sepFunc. This can shorten the length of the sepFunc
parameter list, save unnecessary variable transmission, and further improve performance. To achieve this, we
propose a lazy allocation strategy Ð if a local variable is only used in the region, we will move the variable
deinition to the sepFunc. For example, the n variable in Fig. 2 is initially deined in the oriFunc but redeined and
only used in the region-2, which becomes sepFunc-2 function, so the deinition point of the variable can be
delayed in the sepFunc-2 function.

3.2.3 Control-flow Rebuild. We extract the basic blocks of each identiied region into a sepFunc. The jump
relationship between the regions in the oriFunc is transformed into the function call-return relationship after
ission. The creation of a function call is simple, we only need to insert the function call at the location of the
entry basic block of the region before extraction and set the parameters that need to be passed into the sepFunc.
To further enhance the performance as well as the obfuscation efect, we additionally add the ALWAYS_INLINE

attribute to the remFunc. Since the ission reduced the size of the remFunc, it can be inlined easily.
The handling of function returns is relatively complex due to: If a region has multiple exits, the corresponding

sepFunc needs to encode this information into the return value, so that the remFunc can use this information
to select the corresponding code to execute. As Fig. 2 shows, for the two exits (0 and 1) in region-1, when
sepFunc-1 returns from exit 0, the control low should go to BB5, and when returns from exit 1, it should go
to BB9. We use the return value of sepFunc to indicate the remFunc to determine the execution direction: We irst
number each exit of the sepFunc, use the number as its return value, and then insert a basic block at the call-site
of this sepFunc in the remFunc (e.g., a○ in Fig. 1) to transfer control low based on the return value.

3.2.4 Handling the Exception Control-flows. During program execution, there are some exception control lows
that deviate from the usual function call and return, including the setjmp/longjmp and the C++ exception
handling. The ission requires special handles of them.
Handling the setjmp/longjmp. Programmers could use the setjmp() to record the current context into a

jmpbuf structure. And then, they could use the longjmp() in any subroutines on the call chain of this function to
go back to the place the jmpbuf is pointing to. There is a requirement here that the setjmp() and the longjmp()
using the same jmpbufmust be in the same call chain. Therefore, the call-site of the setjmp() cannot be separated
into any sepFunc, because the stack frame of the function that calls the setjmp() cannot be freed when the
corresponding longjmp() is executed. Otherwise, the longjmp() will direct control low to an unknown location.

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 9

void bar(short a, float b) {
// bar's code
printf("bar: %d, %f\n", a, b);

}
int foo(int m) {

// foo's code
printf("foo: %d\n", m);
return m;

}
int main() {

bar(0x1234, 0.1);
int res = foo(1);
...

}

(a) Before fusion (b) Fusion w/o parameter compression (c) Fusion w/ parameter compression

int bar_foo_fusion(int ctrl, short a, float b, int m) {
if (ctrl) { // bar's code

printf("bar: %d, %f\n", a, b);
return 0;

} else { // foo's code
printf("foo: %d\n", m);
return m; }

}
int main() {

// ctrl is 1, executing bar
bar_foo_fusion(1, 0x1234, 0.1, 0);
// ctrl is 0, executing foo
int res = bar_foo_fusion(0, 0, 0.0, 1);

}

int bar_foo_fusion(int ctrl, int x, float b) {
if (ctrl) { // bar's code

printf("bar: %d, %f\n", (short)x, b);
return 0;

} else { // foo's code
printf("foo: %d\n", x);
return x; }

}
int main() {

// ctrl is 1, executing bar
bar_foo_fusion(1, 0x1234, 0.1);
// ctrl is 0, executing foo
int res = bar_foo_fusion(0, 1, 0.0);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 3. An example of performing the fusion on two functions.

Handling the C++ exception. The exception-handling mechanism is a key feature of C++ that developers can
capture actively or passively generated exceptions in the try block by writing the catch statements. It requires
the cooperation of the system ABI and the exception-handling runtime library. They select the appropriate
handling code to execute by searching the exception-handling information recorded in the binary. For the Itanium
exception handling on Linux and the SEH mechanism on Windows, exception-handling information is recorded
at function granularity. Since the ission moves part of the code into a sepFunc, the try-catch pair may be broken,
making exception-handling information inconsistent. Simply skipping the exception-relevant code (avoiding
them from being separated into any sepFunc) would reduce the obfuscation efect. Therefore, when identifying
the code region, if it contains any code that may generate an exception, we will locate the corresponding catch
code and divide it into the region at the same time.

3.3 The Fusion Primitive

The fusion selects functions to form fusFunc and rebuilds the control and the data low to ensure correctness.
While ission focuses on the inside of the function, fusion pays much more attention to the outside. This nature of
fusion leads to the function-choosing problem, which contains two folds. One is how many functions to choose
for fusion at a time, and the other is which functions to choose. In theory, the fusion can aggregate any number of
functions. To balance the performance overhead and the obfuscation efect, we choose to aggregate two functions
to form a fusFunc.

3.3.1 Selecting Functions to Form fusFunc. The fusion cannot arbitrarily select functions, it needs to select
functions with compatible types of return values. The deinition of incompatibility is that if converting between
two types loses precision, the two types are incompatible. For example, when the return value of one function
is an integer and the other is a loat, these two functions cannot be aggregated. In fact, other conditions limit
the selection of functions: 1) The variadic functions, e.g., the printf(...); 2) Two functions with incompatible
types of the return values; 3) Two functions that have direct calling relationship. The irst two constraints are
designed for correctness, and the last is designed for performance to avoid generating a lot of recursive fusFuncs.
Functions that meet the above constraints will be randomly aggregated in pairs.

3.3.2 Data-flow Rebuild. Once the two functions to be aggregated are determined, the function prototype of the
corresponding fusFunc can be determined immediately. For example, as shown in Fig. 3 (a) and (b), the bar()
and the foo() are aggregated into int bar_foo_fusion(). The ctrl parameter is used to select the function
bodies aggregated from the bar() and the foo(). Determining the function prototype of fusFunc is crucial to the
rebuild of the data low, which involves setting the parameter list and return value.

ACM Trans. Arch. Code Optim.

10 • P. Zhang et al.

int bar() {
// bar's code

}

int foo() {
// foo's code

}

int (*fptr)();

int (*fptr)()

int res = fptr()

fptr = (&bar_foo) | tag

value tag
if (extract_tag(fptr))

res = tmp

fptr = &barfptr = &foo tmp = fptr()val = clear_tag(fptr)

tmp = val(extract_tag())

(a) (b) (c)

int main(int argc) {
if (...)

fptr = &bar;
else

fptr = &foo;
... ...
int res = fptr();
... ...

}
(d)

Fig. 4. Function reference and indirect call processing.

Parameter list compression. Simply grouping the parameter lists makes the parameter list of fusFunc too
long, which will degrade the performance of calling fusFunc because too many parameters will be passed on the
stack, which is an ineicient way. To achieve eicient parameter passing, we propose a parameter list compression
mechanism Ð if the types of the two parameters from the two functions are compatible, we compress them into
one. The reason why we can do this is that when a fusFunc is called, only the parameter list of one of the functions
participating in the aggregation is used. For example, as Fig. 3(c) shows, both the bar() and the foo() have an
integer parameter (short a and int m), we compress them into one integer parameter (int x). Parameters that
can not participate in the compression will be copied into the parameter list of the fusFunc. In the worst case, the
number of parameters is the sum of the parameters of the two functions, which means none of the parameters
can be compressed. To avoid using the stack to pass parameters as much as possible, we preferentially select
functions with a total number of parameters less than six for the fusion.
Return value determination. Determining the return type of fusFunc is relatively simple: 1) If the return

type of one function is void, then the return type of the fusFunc is the return type of another; 2) If the return
types of the two functions are both not void, the compressed type is used as the return type of the fusFunc, which
is similar to the parameter list compression mechanism.

3.3.3 Control-flow Rebuild. Once the fusFunc is created, the two involved oriFuncs are removed, and all call-sites
to the oriFuncs are replaced to call the fusFunc. As mentioned before, a ctrl parameter is added to the fusFunc to
select the code block aggregated from the oriFuncs. The value of this parameter is 0 or 1, which is set according
to the original call site of the oriFunc. Since the fusFunc parameter list includes the parameters of both oriFuncs,
we only need to pass the parameters required by the oriFunc to the fusFunc at the call-site of this oriFunc.
Unused parameters are set to be 0. Indirect function calls mainly include two cases: one is calling a function by
dereferencing a function pointer, and the other is calling an exported function outside the module.
Handling Indirect function calls. Indirect function calls are more diicult to handle than direct function

calls because we do not know where the oriFunc will be called. Fig. 4 (a) shows an example that calls two functions
by de-referencing the function pointer. The corresponding data low is given in Fig. 4 (b). When aggregating the
bar() and the foo(), we need to change the function pointer points to the fusFunc and then replace the function
call to call this fusFunc. However, we encounter a problem in that we do not know what the value of the ctrl
parameter should be set to. This is because, at the compile time, we don’t know whether the original function
pointer fptr points to the bar() or the foo().
To address the above problem, we propose a tagged pointer mechanism, which is similar to the low-fat

pointer [35]. The core idea is to encode the information (called tag) of which oriFunc pointed to by the original
function pointer into the new function pointer, and when the new function pointer is de-referenced to make a
call, the value of the ctrl parameter can be dynamically determined by parsing the new function pointer. As
shown in Fig. 4 (c), when the operation of taking the address of the function participating in the aggregation
occurs, we need to perform the encoding operation. Since the tag is encoded into the function pointer, it can be
propagated along with the function pointer. When the function pointer is de-referenced to make a call, we will
extract the tag in the pointer and set the ctrl parameter according to the tag.

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 11

int bar() {

... ... ;

try {

... ... ;

throw 1;

}

catch (Exception e) {

... ... ;

}

... ... ;

}

1

2

3

4

5

6

7

8

9

10

11

❶ main prog

.section .text

bar:

.try_begin:

call __cxa_throw

.try_end:

.catch_begin:

.section .gcc_except_table

bar

.try_end - .try_begin

.catch_begin

.section .eh_frame

p: __gxx_personality_v0

❷ libc++abi

__cxa_throw:

exception initialization

... ...

call _Unwind_RaiseException

__gxx_personality_v0:

 # find catch and return

❸ libunwind

_Unwind_RaiseException:

stack unwinding

... ...

call *p

(1)

(2) (3)

(4)

Fig. 5. The exception-handling mechanism for Linux C++.

The tag requires two extra bits, where a bit indicates whether the pointer points to a fusFunc, and the other bit
records the value of the ctrl parameter. For example, if the pointer fptr points to the bar(), the tag will be
set to 11b. As shown in Fig. 4 (d), when the pointer fptr is dereferenced to make a call, we insert code to check
whether the tag is empty. If not, the code will extract the ctrl parameter and call the fusFunc. Otherwise, no
additional operations are required.

3.4 The Hidden Primitive

The purpose of the hidden primitive is to transform direct control low into data mappings and employ indirect
control low to counter the analysis. While ission and fusion aim to break function boundaries, hidden seeks
to blur them. The hidden primitive leverages two indirect control low methods, namely the exception handling

mechanism and the virtual call mechanism, to hide the control low graph (branch instructions) and the call graph
(call instructions) respectively.

3.4.1 The Control Flow Graph Hiding. The hidden primitive utilizes the cross-module exception-handling
mechanism to hide branches within functions. We irst introduce the branch selection process for concealing
control low, then we discuss the details of the obfuscation method for C++ programs. For C programs that lack
native exception handling, a complementary approach is used. To address inter-procedural considerations, a code
dealer design ensures consistent and comprehensive control low obfuscation. By combining these techniques,
the hidden primitive ofers robust protection against reverse engineering and code analysis for both C++ and C
programs.

Selecting Branches to Hide. The selection of branches is decided in three folds: 1) hide the sub-graph of the
CFG as large as possible; 2) minimize overhead caused by exception handling; and 3) preserve the program’s
functionality.

First, to hide the major part of the control low, the general principle is to conceal the control low as early as
possible. This approach is based on the fact that the code behind the obfuscated branch has no code reference in the

control low but only data references, eliminating the need for repeated concealment. To this end, the irst branch of
every function should be hidden.

However, when dealing with functions with complex control low structures, such as loops that include nested
loops or branches, if its irst branch is on the critical path, transforming it into the exception-based form would
result in signiicant overhead. To address this issue, we chose to only obfuscate the non-taken branch of the
loop entry and the taken branch of the loop exit, while leaving the branches inside the loop body untouched.
Additionally, considering the loop may contain multiple exits, all the taken branches of exits are obfuscated.
Identifying exit branches is accomplished by locating all the branches inside the loop with an outside destination.

ACM Trans. Arch. Code Optim.

12 • P. Zhang et al.

void bar(int a) {

if (a) {

... ... ;

}

else {

... ... ;

}

}

1

2

3

4

5

6

7

8

bar:

cmp a, 0

jne .else

.if.then:

allocate int exception

call __cxa_throw

.if.else:

allocate float exception

call __cxa_throw

(1) original code (2) exception-based hidden

.catch.int:

... ...

.catch.float:

... ...

.gcc_except_table

.if.then - .bar

.catch.int

.if.else - .bar

.catch.float

bar:

cmp a, 0

jne .if.else

.if.then:

... ...

jmp .if.end

.if.else:

... ...

.if.end: ret

(3) indirect-based

bar:

cmp a, 0

jne .if.else

jmp *.khaos[0]

.if.else:

jmp *.khaos[1]

.khaos_table

.catch.int + 0xbad

.catch.float - .lable

Fig. 6. The hidden example for branch instructions.

This trade-of is based on our observation of the loop’s structure: From a low graph perspective, the loop can

be visualized as a circle with multiple nodes, and this circle can be collapsed into a single node, simplifying the

function into a sequential form. Based on our experiments (ğ5.5), this design efectively hides the major part of
the control-low structures in most functions.
At last, to preserve the functionality, the branches that are already exception-related (e.g., branches in try

blocks) are skipped so as not to interfere with the original exception relationship.
The C++ exception-handling in Detail. As mentioned in ğ3.2.4, the exception-handling mechanism relies

on the system ABI and the exception-handling runtime library. The Fig. 5 depicts the simpliied C++ exception
mechanism under the Linux ABI, which requires the compiler to generate exception-relevant information in
the binary (1 main prog), the C++ language-speciic exception-handling library (2 libc++abi), and a language-
independent but OS-dependent stack unwind library (3 libunwind).

As shown in Fig. 5, for the throw statement that actively generates an exception, the compiler compiles it into
a direct call to the __cxa_throw() function in the libc++abi library. This call contains three parameters, which are
the exception object, exception object type information, and the pointer to the exception object’s destructor. Then
the __cxa_throw() function initializes the exception object and calls the _Unwind_RaiseException() function in
libunwind, which retrieves the address of the code that throws the exception, and unwinds the stack frame through
the eh_frame section in the binary. During the unwinding process, _Unwind_RaiseException() function indirectly
calls the __gxx_personality_v0() function (C++ related) deined in libc++abi. __gxx_personality_v0() searches
for the catch statement under the current stack frame by querying the gcc_except_table in the binary. Finally,
it replaces the return address on the stack with the address of the corresponding catch statement, efectively
redirecting the control low to the appropriate catch block.

The Hiding Process. The hidden primitive utilizes the above cross-module mechanism to hide the control low.
First, it numbers the basic block inside the function. The number indicates the type of exception thrown after the
basic block is executed, such as integer, loating point, and customized types. Then, it inserts the corresponding
catch statements in the subsequent basic blocks to distinguish diferent control lows according to the type.

For example, in Fig. 6 (1) the original control low relationship between diferent basic blocks is apparent. After
the control low is hidden (Fig. 6 (2)), the original basic blocks are replaced with throw statements. During program
execution, the control low becomes intertwined with the system ABI and the exception-handling runtime library.
These components work together to select the appropriate handling code by searching the exception handling
information in the binary ile. Other obfuscation techniques like data obfuscation can be used here to enhance
the hidden efect, for example, by adding or subtracting a random number to the .gcc_except_table’s item.
Since this paper focuses on code transformation, we leave this as an orthogonal technique.

The Complementary Method for C Programs. The exception-handling mechanism is primarily designed
for C++ programs, but it is important to recognize the need for a similar hiding efect in C programs. This
becomes particularly crucial when considering the extensive codebase of C programs, their vital role in modern

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 13

computer systems, and their popularity in various utilities. Additionally, the research of static code analysis and
vulnerability detection also heavily focused on C programs [4, 7, 37], especially when studying on large code
bases [51].
To extend the coverage to C programs, we analyze the essence of the exception-handling mechanism and

abstract it as a table-driven lookup-based indirect jump statement. In summary, the mechanism searches for
exception-handling information generated by the compiler, identiies the address of the corresponding catch
statement, and performs a jump to that location.

Building upon this observation, we propose a complementary method speciically tailored for C programs. As
Fig. 6 (3) shows, irstly, we create a reference table called .khaos_table, which simulates exception-handling
information and generates a corresponding set of jump targets. Next, the code is reinforced through indirect
jumps. Simultaneously, the simulated set of jump targets is relocated at load time similar to the exception-based
hidden method.

Upon applying the hidden primitive to the code, numerous code fragments are not referenced by any other code
but by data. These fragments constitute isolated and unreferenced portions of the program, further enhancing
the concealment of the control low. By employing this complementary method, we extend the beneits of the
exception-based hidden approach to C programs. The construction of the .khaos_table and the utilization of
indirect jumps contribute to the creation of isolated code fragments, making the control low more obscure and
diicult to analyze.

The Hidden Code Dealer. After the indirect control low is generated, the hidden code remains in the original
function. To fulill the inter-procedural obfuscation, we intend to send these codes to other functions. However, it
is challenging to do it without inluencing the program’s functionality in the current compiler architecture. Take
the LLVM framework as an example, inter-function transformations are typically performed in the middle end
using module passes. These passes operate on all functions within the same compile unit (e.g., .cpp ile). However,
at this stage, the program code is in a Static Single Assignment (SSA) form, and moving code from one function
to another can disrupt the SSA form, resulting in inconsistent program functionality.

Moving to the LLVM backend, where the code is in a non-SSA form, might seem like an option. However, the
backend processes only one function at a time. It transforms an SSA function into the non-SSA form, emits its
binary code after some intra-function transformations, frees the non-SSA function, and then moves on to the
next SSA function. This means that there is only one non-SSA function available at any given time, making direct
code manipulation challenging.
To overcome these challenges, the copy-delete-based code dealer approach is proposed. This approach aims

to move the hidden code from its original function to another function while preserving the program’s func-
tionality and adhering to the constraints of the compiler architecture. It involves copying the hidden code to
another function during the middle end, where inter-procedural transformations are possible. It additionally
adds references to the copied code to prevent it from being optimized away. Once the non-SSA form code is
generated, the original code in the hidFunc is deleted, and all references to the original code are adjusted to point
to the corresponding copy. Importantly, the reference adjustment is performed intra-procedurally, only requiring
changes to the referenced symbol within the hidFunc.
By employing this approach, the hidden code can be correctly moved into other functions without altering

the underlying compiler architecture. As a result, the program will contain numerous indirect inter-procedural
control lows that jump to the middle of functions in an interleaved manner, further obfuscating the control low
and making the program more challenging to analyze.

3.4.2 The Call Graph Hiding. The above hiding process has covered the jump relationship inside the functions but
leaves the call relationships untouched. Similar to the exception handling mechanism, which decides the control
low at runtime, there is a dynamic dispatching mechanism for function calls in C++ Ð virtual tables (vtable)

ACM Trans. Arch. Code Optim.

14 • P. Zhang et al.

void bar {

... ... ;

}

void foo() {

bar();

}

int main() {

foo();

}

1

2

3

4

5

6

7

8

9

bar:

... ...

foo:

mov rdi, khaos_table1 ## load table base

mov rdx, [rdi + i*8] ## load function ptr

call *rdx ## indirect function call

main:

mov rdi, khaos_table2

mov rdx, [rdi + j*8]

call *rdx

(1) original code (2) forged ktable-based hidden

khaos_table1:

... ...

.quad bar + 0xbad

... ...

khaos_table2:

... ...

.quad foo – lable_1

... ...

khaos_tablen:

... ...

bar:

... ...

foo:

... ...

call bar

main:

... ...

call foo

00: + value

01: – value

10: – label_idx

11: swap

15 14

0

key2 key0

63

value / idxtype

013

0xbad

0x8001

key3 key1

user-defined key

Fig. 7. The hidden example for call instructions.

mechanism, which is used for runtime polymorphism. Inspired by the counterfeit object-oriented programming

attack [55], which induces malicious program behavior by forging illegal vtable that contains legal virtual
functions pointers, we propose the call graph hiding by forging vtables and transforming the calls into virtual
function call form.
Selecting Calls to Hide. Selecting calls to hide poses a diferent challenge compared to branch selection.

Unlike branches that are contained within a single function, calls can be scattered across diferent functions,
making it necessary to consider all instances of the call to achieve a comprehensive hiding efect. Hiding only the
irst call instruction would leave other call instructions visible and potentially expose the underlying control low.

To achieve a comprehensive hiding efect within the call graph, it is imperative to obfuscate as many calls as
feasible. Nonetheless, selecting calls entails a delicate balance between performance optimization and obfuscation.
Therefore, we have embraced a design principle akin to the ission primitive: by identifying critical code segments
or sensitive functions where heightened obfuscation is essential for security, we intensify obfuscation techniques
in these areas. Simultaneously, we exercise caution in less critical sections to mitigate performance impact.
This methodology ensures that calls with minimal performance implications are prioritized for obfuscation,

thereby striking an equilibrium between efective concealment and maintaining reasonable program execution
eiciency. Additionally, alternative strategies such as utilizing proiling tools to pinpoint performance bottlenecks
introduced by obfuscation, ine-tuning obfuscation parameters for optimized code, and progressively integrating
obfuscation into the codebase while monitoring performance impacts at each stage, can be employed to manage
this delicate tradeof, we leave them as future work.

The Hiding Process. The hidden primitive randomly ills function pointers corresponding to callee functions
into forged tables. At the call site, the original call instruction is transformed into the virtual function call form
by replacing the call target regarding the vtable. The modiied call instruction speciies the target vtable and the
index of the desired function within that vtable. For example, in Fig. 7 the original code contains three functions
with direct call relationships. Firstly, the hidden primitive ills the function pointers to bar() and foo() into the
item i of khaos_table1 and item j of khaos_table2, respectively. Secondly, the original direct call instructions are
transformed as function pointer loading instructions and indirect calls with the corresponding vtable and index.

Arrangement of Ktables. The arrangement of forged ktables considers both the calls within the same basic
block and those in diferent functions, aiming to optimize performance and enhance obfuscation. For calls within
the same basic block, grouping the targets within the same ktable improves localities. This means the calls made
within a speciic code section are organized together, allowing for better data cache utilization and potentially
reducing the overhead associated with repeated lookups. On the other hand, calls in diferent functions, even
if they have the same call target, are placed in separate tables. This approach ensures that the ktables remain
function-speciic and prevents potential analysis from identifying patterns or relationships between functions
easily.

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 15

Obfuscation for Ktables. Similar to the control low graph hiding approach, the elements within vtables
are obfuscated during compilation. Speciically, the user speciies a 64-bit key, which contains 4 16-bit sub-keys,
and the number of every forged vtable is multiple of four. Each sub-key includes 4 cases, indicated by its most
signiicant two bits as follows:

• 00/01: add/subtract a constant to the function pointer, the constant value is decided by the lower 14 bits in the
key;

• 10: subtract a label deined by KHaos, the label number is decided by the lower 14 bits;

• 11: swap the current item with the next item in the same vtable.

KHaos inserts an initialization code into the program with the user-deined key. It parses the key at the
program loading time to sequentially recover the actual pointers in the forged vtable. This ensures that the actual
function pointers are concealed. The obfuscated elements are corrected at the program loading time, allowing
the program to function correctly. This way, the control low is obscured, and the actual function being called is
determined dynamically at runtime.

3.5 Combination

The three primitives, ission, fusion, and hidden, possess distinct obfuscation characteristics and can be combined
to enhance the obfuscation efect. Each primitive serves a speciic purpose in altering the program’s structure
and control low.

• Fission excels at dividing large functions into smaller ones, but it may be less efective when applied to small
functions. Its primary goal is to split functions and introduce trampoline blocks to establish call relationships
between the separated parts.

• Fusion, on the other hand, is suitable for combining two functions of similar size to obscure their individual
features. When applied to functions of disparate sizes, fusion may not signiicantly alter the characteristics of
the larger function. The main objective of fusion is to aggregate code blocks and adjust references to create a
consolidated function.

• Hidden builds upon the foundations of ission and fusion. Its primary aim is to conceal the transformations
performed by ission and fusion at compile-time and reveal them at runtime. Hidden focuses on transforming
direct control low relationships into exception-handling mappings and employs indirect control low to
impede analysis tools.

By combining the three primitives, developers can achieve a comprehensive and robust obfuscation efect.
Fission and fusion primarily target the program’s control low graph, while hidden adds compile-time hiding
and runtime recovery mechanisms for deeper obfuscation. We propose an auto mode combination. which irst
attempts to split functions as much as possible using ission, then utilizes fusion to aggregate the oriFuncs that
were not processed by ission, and applies hidden to cover the dominator paths in the program. The auto mode
combination strikes a balanced trade-of between obfuscation efectiveness and performance overhead. It is
well-suited for real-world software scenarios. Developers can choose this combination or select the appropriate
combination based on their speciic requirements. For example, by only aggregating and hiding the sepFuncs
generated by the ission process, the issue of handling indirect function calls is eliminated, which is particularly
suitable for programs with numerous exported functions, such as a runtime library.

4 KHaos Implementation

The KHaos is implemented based on the LLVM-9.0. Fission, fusion, and hidden are middle-end passes, with the
code dealer containing a backend pass, and the fusion pass is scheduled after the ission pass and before the
hidden pass. KHaos takes the source code and the user’s parameters as input, which speciies the obfuscation

ACM Trans. Arch. Code Optim.

16 • P. Zhang et al.

-10

0

10

20

30

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

43
3.
m
ilc

44
4.
na
m
d

44
5.
go
bm
k

44
7.
de
al
ll

45
0.
so
pl
ex

45
3.
po
vr
ay

45
6.
hm
m
er

45
8.
sje
ng

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
0.
lb
m

47
1.
om
ne
tp
p

47
3.
as
ta
r

48
2.
sp
hi
nx
3

48
3.
xa
la
nc
bm
k

GE
O
M
EA
N

o
v
e
rh
e
a
d
(%
) Fission Fusion Hidden Auto

-15

0

15

30

45

50
0.
pe
rlb
en
ch
_r

50
2.
gc
c_
r

50
5.
m
cf
_r

50
8.
na
m
ed
_r

51
0.
pa
re
st
_r

51
1.
po
vr
ay
_r

51
9.
lb
m
_r

52
0.
om
ne
tp
p_
r

52
3.
xa
la
nc
bm
k_
r

52
5.
x2
64
_r

52
6.
bl
en
de
r_
r

53
1.
de
ep
sje
ng
_r

53
8.
im
ag
ick
_r

54
1.
le
el
a_
r

54
4.
na
b_
r

55
7.
xz
_r

60
0.
pe
rlb
en
ch
_s

60
2.
gc
c_
s

60
5.
m
cf
_s

61
9.
lb
m
_s

62
0.
om
ne
tp
p_
s

62
3.
xa
la
nc
bm
k_
s

62
5.
x2
64
_s

63
1.
de
ep
sje
ng
_s

63
8.
im
ag
ick
_s

64
1.
le
el
a_
s

64
4.
na
b_
s

65
7.
xz
_s

GE
O
M
EA
N

o
v
e
rh
e
a
d
(%
)

Fig. 8. Runtime overhead of SPEC CPU 2006 (upper part) and 2017 (lower part) C/C++ programs.

options (e.g., the selection of the primitives). The source code will be compiled into the LLVM IR, and then KHaos

performs the transformations and compiles them into the executable.
The tag bits choice. As mentioned in ğ3.3, the tagged pointer selects the code block aggregated from diferent

oriFuncs. On the X86_64 architecture, only 48 bits of the virtual address are efective, so the upper 16 bits of
the function pointer are unused and can be used to place the tag. However, this approach is expensive when
handling statically initialized pointers, such as global static function pointers and virtual function tables. For the
position-independent executable, these pointers need to be relocated at load time. To attach the tag information
to them, we need to add an initialization code to rewrite these pointers after the relocation, which will slow down
the loading process.
To address this problem, we choose the lowest bits of function pointers. This is because the functions are

usually 16 bytes aligned with the performance consideration, so the lowest 4 bits of the function pointer can be
used to place the tag. Actually, the clang compiler has already used the least bit to identify whether a function
pointer points to a virtual function or not, so currently, only the 3 bits are unused. Instead of rewriting statically
initialized pointers after the relocation, we utilize the relocation mechanism directly by adding the tag’s value to
the addend ield (which is used to add an ofset when relocating) of the relocation item, so the tag can be attached
to the pointer during the relocation. This method cannot be applied to support the upper bits tag because it
exceeds the range supported by the addend ield, i.e., (−231, +231].

5 Evaluation

We run KHaos on Ubuntu 22.04 (Kernel v5.15.0) that runs on an Intel(R) Xeon(R) Gold 6148 CPU with 160 cores
and 1.5TB memory. This section evaluates KHaos in terms of efectiveness and performance, and answers the
following questions:

• (Q1) How is the performance of the obfuscated programs?

• (Q2) How does KHaos work against the state-of-the-art binary diing techniques?

• (Q3) How good is KHaos at hiding real vulnerable code?

• (Q4) How good is KHaos compared with other obfuscators?

Test Suites. We used three test suites to evaluate KHaos: 1) All C/C++ programs in SPEC CPU 2006/2017
benchmarks with the ref input (denoted as the T-I); 2) All 108 programs in the CoreUtils 8.32 (denoted as the
T-II); 3) Five commonly used programs in embedded devices with at least one vulnerability, including two popular

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 17

228 266 250

0

20

40

Sub Bog Fla Fla-10 Fission Fusion Hidden Autoo
v
e

rh
e

a
d

(%
)

SPEC CPU 2006 SPEC CPU 2017 GEOMEAN

Fig. 9. Runtime overhead of O-LLVM and KHaos.

IoT JavaScript engines (JerryScript and QuickJS), OpenSSL-1.1.1, BusyBox-1.33.1 and libcurl-7.34.0 (denoted as
the T-III). The performance evaluation was performed on the T-I (Q1); The efectiveness against binary diing
techniques was evaluated on the T-I and the T-II (Q2); The ability to hide vulnerable code was evaluated on
the T-III (Q3). Since software developers typically link programs into a single binary in embedded devices, we
compiled and obfuscated these test suites in the same way under O2 with the link-time optimization.
Comparison targets. To compare with existing obfuscator (Q4), we choose two popular compiler-level

obfuscation tools (O-LLVM [32] and BinTuner [52], which are open-sourced and compiler-based (same as KHaos)).
O-LLVM [32] contains three obfuscation methods: instruction substitution (Sub), bogus control low (Bog), and
control low lattening (Fla). Literature [3, 16, 52, 61] in software engineering, systems security, and programming
languages ields all use it in their experiments. To ensure the consistency of the evaluation environment, we
upgraded the LLVM version of O-LLVM [32] to 9.0, which is the same as KHaos. We also choose BinTuner [52],
which is an iterative compiler tool that uses compiler options to transform the code to enlarge the diference of
binaries, as another target to compare KHaos with the compiler’s options.

5.1 Performance Overhead ater Obfuscation

We separately evaluated the performance overhead of the ission, fusion, hidden, and the auto combination
mode introduced in Section ğ3.5 on the T-I. As shown in Fig. 8, the geometric performance overhead of the
three primitives and the auto mode are 5.1%, 4.6%, 7.5%, and 7.8%, respectively. The reason why some cases (e.g.,
456.hmmer) have a negative performance overhead is that after the ission separates part of the code, the remFunc

can be further inlined to its callers, and the fusion can improve the code locality of the aggregated functions. The
results demonstrated that obfuscations compliant with the compiler optimizations can have good performance
advantages. We also compared the performance overhead of KHaos with O-LLVM’s Sub, Bog, Fla. As shown in
Fig. 9, KHaos has comparable overhead with the Sub and the Bog. Due to the high overhead of Fla, we reduce its
obfuscation ratio to 10% (Fla-10), and others are all at 100%.

5.2 The Efectiveness against Binary Difing

Table 1. Summary of the chosen binary difing works and tools.

Works/Tools Asm2Vec[16] DeepBinDif[17] DiEmph[65] jTrans[59] Optango[23] Safe[43] Trex[49] Zeek[56] BinDif[73] Catalog1[63] FSS[18]

Approach1 ✾ ✾ ✾ ✾ ✾ ✾ ✾ ✾ ✽ ✽ ✽

Granularity2 F BB/CG F F F/CG F F/CG BB All F I/F/CG

Symbol Relying3 ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘

Mem Consuming4 ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Time Consuming5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘

1 The category of the corresponding work/tool. ✾: learning-based approach, ✽: traditional approach.
2 Granularity for diing. I: instruction, BB: basic block, F: function, CG: call graph, All: every granularity is considered.
3 Whether the un-stripped binaries have side efects. 4/5 Whether the approach is memory/time consuming.

Confrontation targets.We leverage 11 state-of-the-art binary diing techniques to evaluate the efectiveness
of KHaos. Their characteristics are summarized in Table 1. Among them, 8 approaches are learning-based and
have been retrained on our test suites, while the remaining 3 are traditional approaches. For example, Catalog1 [63]
and FSS (FunctionSimSearch [18]) are hash-based methods. Catalog1 uses raw bytes as input features and a

ACM Trans. Arch. Code Optim.

18 • P. Zhang et al.

0.0

0.5

1.0

Catalog1 FSS_IMM Asm2Vec Safe DiEmph jTrans-0 jTrans Zeek FSS_OP DeepBinDiff BinDiff FSS_CG Optango Trex

Intra-procedural Inter-procedural

S
im

il
a
ri
ty

Sub Bog Fla-10 Fission Fusion Hidden Auto

Fig. 10. Similarity results of chosen binary difing works and tools.

diferent signature size (i.e., number of hash functions). FSS uses a combination of graphlet, mnemonic, and
immediate. We followed the experiment setting in previous work [42] to evaluate them.
Although these techniques commonly employ function-based diing granularity, they also have considered

various other granularities during the diing process. For example, the DeepBinDif [17] chose the basic block
as the granularity and embedded call graph information into its embedding. BinDif [73] is an industry-standard
binary diing tool, which difs the semantic similarity across multiple granularities, including instruction, basic
block, function, and call graph). Moreover, Optango [23], FSS [18] (conigured to use the graph in binary), and
Trex [49] incorporate inter-procedural information including call relationship, call graph, and calling convention.
Given that KHaos focuses on inter-procedural obfuscation, the diverse range of the diing granularities employed
ensures a comprehensive understanding of strengths and limitations within the appropriate domain. Symbol

relying means whether the un-stripped binaries have side-efects or not, for example, BinDif usually uses function
names to reduce the searching space. Mem/Time consuming means the tool requires a lot of memory (e.g., more
than 1 TB) or takes a long time for retraining and diing.

Comparing binary diing works is challenging because their measurements of similarity are very diferent [52],
such as graph edit distance or statistical signiicance. Simply comparing their similarity scores does not provide
accurate information. For the open-sourced works in academia, we normalized their results by computing the ratio
of true matching function pairs that are also the top-ranked matching candidates (i.e. Precision@1). IMF-SIM [61],
Asm2Vec [16], and Ren et al. [52] also use Precision@1 to measure diing accuracy in their paper. For the
commercial binary diing tool BinDif [73], we normalized its similarity score to [0, 1].

Paring success judgment method. Since KHaos changes the number of functions, we relax the requirements
for Precision@1. For the ission, if the oriFunc is paired with any sepFuncs generated from it or the remFunc, this
pairing is recognized as successful. For the fusion, if the fusFunc is paired with any function before the fusion,
this pairing is recognized as successful. For the fusion, if any part of the function is paired with the original
function, this pairing is recognized as successful. For the tools that do not use the function as diing granularity
(e.g., basic block), the pairing is recognized as successful as long as their belonging functions are matched, even if
the two basic blocks are not truly matched. It is worth noting that the above setting is looser than originally used
in these tools but is more challenging for KHaos.
Test suite adjustment. The test suites for DeepBinDif [17] need to be adjusted due to the inability to run

results. It requires too much memory (sometimes more than 10 TB) due to its representation of basic blocks. Since
its diing process is tightly coupled with binary size, we decided not to modify it and only use programs with
less than 40k lines. Even with the reduced test suite, it is still time-consuming (e.g., over 1 week to dif binaries of
508.namd_r). It’s worth mentioning that this setting is unfavorable to KHaos because it uses original functions
to obfuscate each other, lacking material reduces the obfuscation efect. Other binary diing tools still use the
normal test suites.

Results. We evaluated the accuracy of these tools by comparing obfuscated and un-obfuscated (un-stripped)
binaries on the T-I and T-II. As depicted in Fig. 10, higher accuracy means lower adversarial efect. Based on the
corresponding approach, we grouped the results into intra-procedural and inter-procedural categories. On the
one hand, for the binary diing works that only consider the intra-procedural information, the inter-procedural

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 19

obfuscation can fundamentally defeat them because the code structures along with the semantics are signiicantly
changed. On the other hand, for the binary diing works that take inter-procedure information into account, the
inter-procedural obfuscation can also defeat them because the inter-procedural information they extracted, such
as the types of function calls, the numbers of function calls, and the call graph, are also signiicantly changed
after the obfuscation.

Since DeepBinDif [73] used the reduced test suite, which limits the ability of KHaos, its result is higher than
others. Although it uses the basic block level instead of the function level as its granularity, the feature vector
of the basic block still encodes the control low graph and call graph, which KHaos has changed, and that’s
why KHaos can defeat it. Since BinDif [73] takes advantage of function names, its result is higher than others.
With comparable overhead, KHaos can achieve a much better adversarial efect than O-LLVM [32]. Importantly,
KHaos achieves this without introducing program-irrelevant code. This result indicates that KHaos efectively
enhances the obfuscation of the programs while maintaining their core functionality and relevance.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

43
3.
m
ilc

44
4.
na
m
d

44
5.
go
bm
k

44
7.
de
al
II

45
0.
so
pl
ex

45
3.
po
vr
ay

45
6.
hm
m
er

45
8.
sj
en
g

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
0.
lb
m

47
1.
om
ne
tp
p

47
3.
as
ta
r

48
2.
sp
hi
nx
3

48
3.
xa
la
nc
bm
k

Sub Bog Fla-10 Fission Fusion Hidden Auto

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

50
0.
pe
rlb
en
ch
_r

50
2.
gc
c_
r

50
5.
m
cf
_r

50
8.
na
m
d_
r

51
0.
pa
re
st
_r

51
1.
po
vr
ay
_r

51
9.
lb
m
_r

52
0.
om
ne
tp
p_
r

52
3.
xa
la
nc
bm
k_
r

52
5.
x2
64
_r

52
6.
bl
en
de
r_
r

53
1.
de
ep
sj
en
g_
r

53
8.
im
ag
ic
k_
r

54
1.
le
el
a_
r

54
4.
na
b_
r

55
7.
xz
_r

60
0.
pe
rlb
en
ch
_s

60
2.
gc
c_
s

60
5.
m
cf
_s

61
9.
lb
m
_s

62
0.
om
ne
tp
p_
s

62
3.
xa
la
nc
bm
k_
s

62
5.
x2
64
_s

63
1.
de
ep
sj
en
g_
s

63
8.
im
ag
ic
k_
s

64
1.
le
el
a_
s

64
4.
na
b_
s

65
7.
xz
_s

Fig. 11. The opcode vector distance between the original and obfuscated binaries.

Opcode Histogram. The opcode histogram is crucial internal information that can reveal the semantics of
the entire binary. It has been extensively studied and discussed in various related works [6, 11, 12, 24, 25]. To this
end, we present the opcode details collected from the T-I and T-II to further demonstrate the efectiveness of
KHaos. To obtain the opcode details, we utilized the objdump tool to disassemble all the binaries and collected
the opcode histograms in vectors. Each element in the vector represents a speciic opcode type (e.g., add), while
its value indicates the frequency of occurrence for the corresponding opcode within the binary. By comparing
the opcode vectors of the original and obfuscated binaries, we calculated the vector distance.

Fig. 11 depicts the calculated distances in a logarithmic scale, as diferent programs may have varying scales of
opcodes. Notably, KHaos can generate a wider range of opcodes for most programs. For example, in the case
of 400.perlbench, the distance of the binary generated by the Auto mode is 42,048, while O-LLVM achieved a
maximum distance of 11,814. On average, the vector distance of KHaos obfuscated binaries is 3.83 times greater
than that of O-LLVM obfuscated binaries. This stark diference demonstrates the capability of KHaos to diversify
the opcode distribution efectively.

5.3 The Ability to hide Vulnerable Code

We use the T-III to evaluate the ability to hide 19 real-world vulnerabilities. In this experiment, we used
Asm2Vec [16] and SAFE [43] to calculate the escape@n ratio (the rank of truly matched pair in the matched result)
of vulnerable functions. The reason why other tools were not used is that they only give top-1 matched results.
We calculated escape@1/10/50 ratio of vulnerable functions. For example, as shown in Fig. 12, the escape@50 ratio

ACM Trans. Arch. Code Optim.

20 • P. Zhang et al.

of Auto on Asm2Vec is over 0.8, which means more than 80% of vulnerable functions can not be found within
top-50 ranked functions. Moreover, the obfuscation ratio of Fla in O-LLVM is set to 100%, which would bring
unacceptable overhead.

0.0

0.5

1.0

Asm2Vec Safe Asm2Vec Safe Asm2Vec Safe

Escape@1 Escape@10 Escape@50

e
sc

a
p

e
 r

a
ti

o
Sub Bog Fla Auto

Fig. 12. Escape ratio for top@1/10/50 of vulnerable functions. Higher means stronger hiding ability.

The escape ratio could relect the ability to hide the vulnerable code with diferent obfuscation methods. With
the same precision and binary diing tool (e.g., escape@50-Asm2Vec), auto is better than Sub, Bog, and Fla in
O-LLVM. This ratio could also relect the diing ability of binary diing tools. With the same precision and
the settings of obfuscators, e.g., escape@1-Auto, Asm2Vec is more accurate than Safe. The experimental results
show that KHaos can not only ight against binary diing tools but also reduce the pairing ranking of vulnerable
functions signiicantly, achieving the purpose of hiding vulnerable code.

5.4 Comparison with BinTuner.

Baseline setting. The comparison with BinTuner [52] is a challenge because KHaos and BinTuner cannot
choose the same baseline. Suppose BinTuner chooses the same baseline as KHaos (O2), to expand the binary
diference, the generated binary would be close to O0, and the performance overhead would be higher, which is
unfair to BinTuner. As a result, we followed the original baseline of BinTuner (O0) and used binaries generated
by the auto mode for KHaos.

Binary diing comparison. We leverage BinTuner to generate the obfuscated binaries of T-I and calculate
the similarity score of BinDif [73] for the generated binaries by BinTuner and KHaos. As shown in Fig. 13, the
diference score for BTR-O0 is the lowest among the BinTuner-generated binaries. This is because BinTuner uses
O0 as the baseline during its iterative compilation process. On the other hand, BTR-O1, BTR-O2, and BTR-O3 have
higher diference scores. In the case of KHaos, it chose O2 as its baseline, resulting in Auto-O2 having a slightly
higher diference score compared to Auto-O0, Auto-O1, and Auto-O3. However, all the KHaos-generated binaries
have much lower diference scores compared to the BinTuner-generated binaries.
It is worth mentioning that during the experiment, we observed a swinging phenomenon with BinTuner,

where the generated binary, when using O0 as the baseline, was similar to O3, and when using O3 as the baseline,
it was similar to O0. This suggests that BinTuner struggles to generate binaries with low overhead but signiicant
binary diferences. In contrast, KHaos overcomes this limitation by leveraging the program itself to obfuscate
it. Additionally, the fusion process in KHaos is random, resulting in a diferent binary being generated each
time. Overall, the binary diing comparison provides strong evidence that KHaos achieves a higher level of
obfuscation with lower diference scores compared to BinTuner.
Performance overhead comparison. To compare the performance overhead of BinTuner and KHaos, we

collect their runtime performance compared with default optimization levels (O0 - O3). Both BinTuner and KHaos
have performance speed up on O0 and O1 while slowing down at O2 and O3. For the convenience of comparison,
all the performances are normalized to [0, 1]. As shown in Fig. 14, BinTuner has comparable overhead with
KHaos in general, while it also brings signiicant overhead on some programs.
Observation on compiler optimization regarding obfuscation. Regarding the relationship between

compiler optimization and obfuscation, compilers aim to improve program performance and reduce binary size
through optimizations. However, code obfuscation techniques often need to counteract these optimizations to

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 21

40
0.p
erl
be
nc
h

40
1.b
zip
2

40
3.g
cc

42
9.m

cf

43
3.m

ilc

44
4.n
am
d

44
5.g
ob
mk

44
7.d
ea
lll

45
0.s
op
lex

45
3.p
ov
ray

45
6.h
mm

er

45
8.s
jen
g

46
2.l
ibq
ua
ntu
m

46
4.h
26
4re
f

47
0.l
bm

47
1.o
mn
etp
p

47
3.a
sta
r

48
2.s
ph
inx
3

48
3.x
ala
nc
bm
k

50
0.p
erl
be
nc
h_
r

50
2.g
cc
_r

50
5.m

cf_
r

50
8.n
am
ed
_r

51
0.p
are
st_
r

51
1.p
ov
ray
_r

51
9.l
bm
_r

52
0.o
mn
etp
p_
r

52
3.x
ala
nc
bm
k_
r

52
5.x
26
4_
r

52
6.b
len
de
r_r

53
1.d
ee
ps
jen
g_
r

53
8.i
ma
gic
k_
r

54
1.l
ee
la_
r

54
4.n
ab
_r

55
7.x
z_
r

60
0.p
erl
be
nc
h_
s

60
2.g
cc
_s

60
5.m

cf_
s

61
9.l
bm
_s

62
0.o
mn
etp
p_
s

62
3.x
ala
nc
bm
k_
s

62
5.x
26
4_
s

63
1.d
ee
ps
jen
g_
s

63
8.i
ma
gic
k_
s

64
1.l
ee
la_
s

64
4.n
ab
_s

65
7.x
z_
s

BTR-O0

BTR-O1

BTR-O2

BTR-O3

Auto-O0

Auto-O1

Auto-O2

Auto-O3

0.2

0.3

0.5

0.9

0.1

0.1

0.2

0.2

ge
om
ea
n

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 13. BinDif similarity score (normalized) of SPEC 2006 and 2017 C/C++ programs. BTR-O0 corresponds to the similarity

of binaries generated by BinTuner and LLVM O0. Lower is beter.

40
0.p
erl
be
nc
h

40
1.b
zip
2

40
3.g
cc

42
9.m

cf

43
3.m

ilc

44
4.n
am
d

44
5.g
ob
mk

44
7.d
ea
lll

45
0.s
op
lex

45
3.p
ov
ray

45
6.h
mm

er

45
8.s
jen
g

46
2.l
ibq
ua
ntu
m

46
4.h
26
4re
f

47
0.l
bm

47
1.o
mn
etp
p

47
3.a
sta
r

48
2.s
ph
inx
3

48
3.x
ala
nc
bm
k

50
0.p
erl
be
nc
h_
r

50
2.g
cc
_r

50
5.m

cf_
r

50
8.n
am
ed
_r

51
0.p
are
st_
r

51
1.p
ov
ray
_r

51
9.l
bm
_r

52
0.o
mn
etp
p_
r

52
3.x
ala
nc
bm
k_
r

52
5.x
26
4_
r

52
6.b
len
de
r_r

53
1.d
ee
ps
jen
g_
r

53
8.i
ma
gic
k_
r

54
1.l
ee
la_
r

54
4.n
ab
_r

55
7.x
z_
r

60
0.p
erl
be
nc
h_
s

60
2.g
cc
_s

60
5.m

cf_
s

61
9.l
bm
_s

62
0.o
mn
etp
p_
s

62
3.x
ala
nc
bm
k_
s

62
5.x
26
4_
s

63
1.d
ee
ps
jen
g_
s

63
8.i
ma
gic
k_
s

64
1.l
ee
la_
s

64
4.n
ab
_s

65
7.x
z_
s

BTR-O0

BTR-O1

BTR-O2

BTR-O3

Auto-O0

Auto-O1

Auto-O2

Auto-O3
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 14. Runtime overhead (normalized) of SPEC 2006 and 2017 C/C++ programs generated by BinTuner.

Table 2. Statistics of the hidden primitive.

benchmark
program information control low graph hiding call graph hiding unhidden_

func_ratio#func #call #loop #call_in_loop #hid_br hid_ratio CFG_coverage #hid_call hid_ratio

SPEC CPU 2006 C 8,078 73,196 12,283 13,856 6,299 77.98% 86.61% 52,573 71.82% 14.63%

SPEC CPU 2006 C++ 12,037 25,156 12,304 4,434 9,095 75.56% 89.42% 18,306 72.77% 17.34%

SPEC CPU 2017 C 27,174 356,696 48,644 84,355 22,417 82.49% 87.90% 251,057 70.38% 16.76%

SPEC CPU 2017 C++ 63,009 150,146 52,848 27,869 39,590 62.83% 87.78% 99,784 66.46% 19.25%

Geomean - - - - - 74.34% 87.92% - 70.32% 16.91%

prevent the generation of identical binary code. This adversarial relationship between code obfuscation and
compiler optimizations can lead to unacceptable performance overhead, as seen in the case of Fla in Fig. 9.
To minimize the overhead caused by obfuscation, the code obfuscation should comply with the compiler

optimizations as much as possible. According to our statistics, over 85% of optimizations under LLVM’s -O3
option are intra-procedural. Therefore, KHaos, which leverages inter-procedural code obfuscation, performs
better in terms of performance due to less interference with compiler optimizations. Furthermore, while compiler
optimizations can transform the program, they are limited to speciic patterns such as inline rules and loop-related
transformation rules. This limits the lexibility of obfuscation. In contrast, KHaos can transform the program in a
much more lexible manner, providing greater versatility in obfuscation techniques.

5.5 The Statistics of KHaos Internals

We collected the statistics of ission, fusion, and hidden individually without the combination. For ission, we
calculated the ission ratio (#sepFuncs / #oriFuncs), which resulted in a ratio of 145%. This indicates more sepFuncs
were generated compared to the oriFuncs. Additionally, we found that the average number of basic blocks in
sepFuncs was 6.46. Furthermore, the reduced ratio of oriFuncs after ission was 42%, implying that a signiicant
reduction in the number of oriFuncs was achieved.

ACM Trans. Arch. Code Optim.

22 • P. Zhang et al.

For fusion, we measured the fusion ratio, which represents the ratio of successfully aggregated functions,
resulting in a ratio of 97%. This high fusion ratio indicates that almost all functions were successfully aggregated
during fusion. Additionally, we observed a reduced parameter number of 1.43 through parameter list compression.
Furthermore, each function had an average of 1.89 innocuous basic blocks. It proves that both optimizations
for runtime overhead (e.g., data-low reduction) and obfuscation enhancement (e.g., innocuous analysis) have
worked efectively.

For hidden, we measured the detailed obfuscation information in Table 2. The program information column
provides the statistics of the original program, including the number of functions (#func), calls (#call), loops
(#loop), and calls inside loops (#call_in_loop). We separately calculated the obfuscation results of the control low
graph hiding and the call graph hiding methods.

For the control low graph hidingmethod, we calculated the hidden branch count (#hid_br) and the corresponding
branch hidden ratio (#hid_br/#func). It is worth noting that C++ programs exhibit a lower hidden ratio than
C programs, as the exception-related code is skipped. As explained in Section ğ3.4.1, our approach focuses on
obfuscating branches as early as possible to conceal the major part of the control low graph. To quantify the
efectiveness of this method, we computed the coverage of hidden control low graphs within the obfuscated
functions (CFG_coverage). The results indicate that a signiicant portion (87.93%) of the control low graph is
successfully hidden, demonstrating a high obfuscation efect.

For the call graph hiding method, we calculated the hidden call count (#hid_call) and the corresponding hidden
ratio (#hid_ratio = #hid_call / #call). Compared to C programs, C++ programs have a lower hidden ratio due to
existing calls in vtable form, which were left untouched. A complementary obfuscation technique is to expand
the vtable targets for these calls, such as merging diferent C++ class tables into a single table. We leave this as a
future work.

Finally, to evaluate the impact of neither the control low graph nor the call graph hiding methods on certain
functions, we calculated the ratio of functions not obfuscated by either method (unhidden_func_ratio). These
functions typically consist of a single basic block, have their entire function body within a loop, or contain
predominantly exception-related code. The results reveal that only a minority of functions (less than 20%)
remained unobfuscated using the hidden primitive.

6 Related Work

Inter-procedural Transformation. Function outlining [53] is an optimization technique to reduce binary size.
Its primary objective is to identify identical code in diferent functions and extract it into an individual function.
Consequently, all references to the extracted code are replaced with function calls. Partial inlining [70] utilizes
outlining to divide code into cold and hot parts. Only the hot code of a function is inlined, while the cold code
remains outlined as separate functions.

Inter-procedural Binary Diing. Binary diing works that considered inter-procedural transformation (e.g.,
function inlining) can be divided into three types, we discuss them as follows:

• Works that perform inter-procedural transformations that are speciically designed for function inlining
while diing. For example, BinGo [8] selectively inlines functions to imitate the inline efect. In contrast,
CodeExtract [31] identiies similar code snippets and extracts them to a new function to eliminate the inline
efect.

• Works that use a diferent granularity than function. For example, iBinHunt [44] uses deep taint and automatic
input generation to ind semantic diferences in inter-procedural control lows. BinDif [73] gives a similarity
score in the binary level by considering the information of diferent granularity. InnerEye[72], BinSequence[30],
and DeepBinDif[17] try to use code fragments (e.g., basic block) with call graph as the matching granularity.

ACM Trans. Arch. Code Optim.

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 23

• Works that extract inter-procedural information to improve the diing accuracy. For example, �Dif [38]
assumes the call graph is relatively stable and extracts the call graph features. DiscovRE [19] used the number
of incoming calls as its ilter to speed up the diing process. Chariton et al. [33] used the algorithm in BinDif
with its speciic chosen features extracted from the call graph. SIGMA [1] merged the control low graph,
register low graph, and call graph into a joint data structure to provide a more comprehensive representation.

After the binary is obfuscated by the three obfuscation primitives in KHaos, the extracted inter-procedural
information undergoes signiicant changes, thereby undermining the efectiveness of these diing methods.
Regarding the incoming call count, the fusion primitive notably alters it when a callee is merged with another
function. Additionally, for diing works that operate at a smaller granularity, the reduced granularity introduces
additional overhead for binary diing. Conversely, smaller code fragments may become indistinguishable from
others, thereby increasing the false positive ratio. This limitation is one of the sources of inspiration for our work.

7 Discussion and Future Work

Aside from obfuscation techniques, we found that existing obfuscators have limitations in their implementation.
In O-LLVM [32], Sub can be optimized back under the LLVM O3 option, which leads us to choose O2 as our
baseline. Bog and Fla skip the exception-relevant functions. For Tigress[9], we could not evaluate it in the same
way as O-LLVM due to compilation errors.

The diing process can be seen as a feature-searching process. After we separate and aggregate these features,
the search diiculty increases and the search accuracy decreases. From our conclusion, the lack of call-graph
consideration prevents them from adopting inter-procedural obfuscation. We hope our study will raise awareness
of inter-procedural obfuscation on binary diing.

Smaller diing granularity brings higher diing costs. One way to reduce the cost is to use context information
to narrow the search space. Previous works pay much more attention to control low rather than data low. From
the binary diing perspective, data low is harder to capture and encode. But from the obfuscation perspective,
data low is harder to change, too. Therefore, we predict the potential of data low representation can be further
tapped.

8 Conclusion

Binary diing techniques can be used for 1-day/n-day vulnerability searching by attackers. In this paper, we
propose an inter-procedural obfuscation technique KHaos to protect software against state-of-the-art binary
diing. We design three obfuscation primitives Ð the ission, the fusion, and the hidden. Experimental results
show that KHaos is not only efective but also eicient. We wish our study could not only help developers protect
their software but also promote the development of binary diing techniques.

Acknowledgments

This research was supported by the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-118).

References

[1] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. 2015. Sigma: A semantic integrated graph matching approach for

identifying reused functions in binary code. Digital Investigation (2015).

[2] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. 2018. Fossil: a resilient and eicient system for identifying foss

functions in malware binaries. TOPS (2018). https://doi.org/10.1145/3175492

[3] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. 2016. Code obfuscation against

symbolic execution attacks. In ACSAC. https://doi.org/10.1145/2991079.2991114

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing. In CCS. https:

//doi.org/10.1145/3133956.3134020

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/3175492
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020

24 • P. Zhang et al.

[5] Martial Bourquin, Andy King, and Edward Robbins. 2013. Binslayer: accurate comparison of binary executables. In Proceedings of the

2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop. https://doi.org/10.1145/2430553.2430557

[6] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visaggio. 2016. Evaluating op-code frequency histograms in malware and

third-party mobile applications. In ICETE.

[7] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, Xiaoxue Wu, Chuanqi Tao, Tao Zhang, and Wei Liu. 2023. Learning to Detect

Memory-related Vulnerabilities. ACM Trans. Softw. Eng. Methodol. 33, 2 (2023). https://doi.org/10.1145/3624744

[8] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo: Cross-architecture

cross-os binary search. In FSE. https://doi.org/10.1145/2950290.2950350

[9] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. 2012. Distributed application tamper detection via continuous

software updates. In ACSAC. https://doi.org/10.1145/2420950.2420997

[10] Ang Cui, Michael Costello, and Salvatore Stolfo. 2013. When irmware modiications attack: A case study of embedded exploitation. In

NDSS.

[11] Anderson Faustino da Silva, Edson Borin, Fernando Magno Quintao Pereira, Nilton Luiz Queiroz Junior, and Otavio Oliveira Napoli.

2022. Program representations for predictive compilation: State of afairs in the early 20’s. Journal of Computer Languages (2022).

[12] Thaís Damásio, Michael Canesche, Vinícius Pacheco, Marcus Botacin, Anderson Faustino da Silva, and Fernando M Quintão Pereira.

2023. A Game-Based Framework to Compare Program Classiiers and Evaders. In CGO.

[13] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries through re-optimization. In PLDI. https://doi.org/10.1145/

3062341.3062387

[14] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. Firmup: Precise static detection of common vulnerabilities in irmware. ACM

SIGPLAN Notices 53, 2 (2018), 392ś404. https://doi.org/10.1145/3173162.3177157

[15] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. Acm Sigplan Notices 49, 6 (2014), 349ś360. https:

//doi.org/10.1145/2594291.2594343

[16] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec: Boosting static representation robustness for binary clone

search against code obfuscation and compiler optimization. In S&P. https://doi.org/10.1109/SP.2019.00003

[17] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. Deepbindif: Learning program-wide code representations for binary

diing. In Network and Distributed System Security Symposium. https://doi.org/10.14722/ndss.2020.24311

[18] Thomas Dullien. [n. d.]. Searching statically-linked vulnerable library functions in executable code.

https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html.

[19] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE: Eicient Cross-Architecture Identiication of Bugs in

Binary Code.. In NDSS, Vol. 52. 58ś79. https://doi.org/10.14722/ndss.2016.23185

[20] Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Henderson, and Heng Yin. 2017. Extracting conditional formulas for

cross-platform bug search. In Asia CCS. https://doi.org/10.1145/3052973.3052995

[21] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. 2016. Scalable graph-based bug search for irmware

images. In CCS. https://doi.org/10.1145/2976749.2978370

[22] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A semantic learning based vulnerability seeker for cross-

platform binary. In ASE. IEEE. https://doi.org/10.1145/3238147.3240480

[23] H. Geng, M. Zhong, P. Zhang, F. Lv, and X. Feng. 2023. OPTango: Multi-central Representation Learning against Innumerable Compiler

Optimization for Binary Diing. In ISSRE.

[24] Artyom V Gorchakov, Liliya A Demidova, and Peter N Sovietov. 2023. Analysis of Program Representations Based on Abstract Syntax

Trees and Higher-Order Markov Chains for Source Code Classiication Task. Future Internet (2023).

[25] Sibel Gülmez and Ibrahim Sogukpinar. 2021. Graph-based malware detection using opcode sequences. In ISDFS.

[26] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A large-scale empirical study on the efects of code obfuscations on Android

apps and anti-malware products. In ICSE. https://doi.org/10.1145/3180155.3180228

[27] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. Cross-architecture binary semantics understanding via similar code

comparison. In SANER. https://doi.org/10.1109/SANER.2016.50

[28] YikunHu, Yuanyuan Zhang, Juanru Li, and DawuGu. 2017. Binary code clone detection across architectures and compiling conigurations.

In ICPC. https://doi.org/10.1109/ICPC.2017.22

[29] Yikun Hu, Yuanyuan Zhang, Juanru Li, Hui Wang, Bodong Li, and Dawu Gu. 2018. Binmatch: A semantics-based hybrid approach on

binary code clone analysis. In ICSME. https://doi.org/10.1109/ICSME.2018.00019

[30] HeHuang, AmrMYoussef, andMouradDebbabi. 2017. Binsequence: Fast, accurate and scalable binary code reuse detection. In Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications Security. 155ś166. https://doi.org/10.1145/3052973.3052974

[31] Lichen Jia, Chenggang Wu, Peihua Zhang, and Zhe Wang. 2024. CodeExtract: Enhancing Binary Code Similarity Detection with Code

Extraction Techniques. In LCTES.

[32] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-LLVMśsoftware protection for the masses. In 2015

IEEE/ACM 1st International Workshop on Software Protection. IEEE, 3ś9. https://doi.org/10.1109/SPRO.2015.10

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/2430553.2430557
https://doi.org/10.1145/3624744
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1145/2420950.2420997
https://doi.org/10.1145/3062341.3062387
https://doi.org/10.1145/3062341.3062387
https://doi.org/10.1145/3173162.3177157
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.14722/ndss.2016.23185
https://doi.org/10.1145/3052973.3052995
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1109/SANER.2016.50
https://doi.org/10.1109/ICPC.2017.22
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1145/3052973.3052974
https://doi.org/10.1109/SPRO.2015.10

Shining Light on the Inter-procedural Code Obfuscation: Keep Pace with Progress in Binary Difing • 25

[33] Chariton Karamitas and Athanasios Kehagias. 2018. Eicient features for function matching between binary executables. In SANER.

[34] Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen, and Zheng Wang. 2018. Enhance virtual-machine-based

code obfuscation security through dynamic bytecode scheduling. Computers & Security (2018).

[35] Albert Kwon, Udit Dhawan, Jonathan M Smith, Thomas F Knight Jr, and Andre DeHon. 2013. Low-fat pointers: compact encoding

and eicient gate-level implementation of fat pointers for spatial safety and capability-based security. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security. 721ś732. https://doi.org/10.1145/2508859.2516713

[36] Thomas Lengauer and Robert Endre Tarjan. 1979. A fast algorithm for inding dominators in a lowgraph. TOPLAS (1979). https:

//doi.org/10.1145/357062.357071

[37] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical study on the efectiveness of static C code analyzers for

vulnerability detection. In ISSTA.

[38] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou. 2018. �dif: cross-version binary code similarity

detection with dnn. In ASE. https://doi.org/10.1145/3238147.3238199

[39] LLVM Project. 2022. LLVM Block Frequency Terminology. https://llvm.org/docs/BlockFrequencyTerminology.html.

[40] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Semantics-based obfuscation-resilient binary code similarity

comparison with applications to software plagiarism detection. In FSE. https://doi.org/10.1145/2635868.2635900

[41] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou, Danjun Liu, and Kai Lu. 2023. VulHawk: Cross-architecture

Vulnerability Detection with Entropy-based Binary Code Search.. In NDSS.

[42] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio, Mohamad Mansouri, and Davide Balzarotti. 2022. How

machine learning is solving the binary function similarity problem. In USENIX Security.

[43] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and Leonardo Querzoni. 2019. Safe: Self-attentive function

embeddings for binary similarity. In DIMVA. Springer. https://doi.org/10.1007/978-3-030-22038-9_15

[44] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary hunting with inter-procedural control low. In ICISC.

[45] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. {BinSim}: Trace-based Semantic Binary Diing via System Call Sliced

Segment Equivalence Checking. In USENIX Security.

[46] CareyNachenberg. 1997. Computer virus-antivirus coevolution. Commun. ACM 40, 1 (1997), 46ś51. https://doi.org/10.1145/242857.242869

[47] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumitras. 2015. The attack of the clones: A study of the impact

of shared code on vulnerability patching. In S&P. IEEE. https://doi.org/10.1109/SP.2015.48

[48] Oreans Technologies. 2022. Themida Overview. https://www.oreans.com/themida.php.

[49] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2021. Trex: Learning Execution Semantics from Micro-Traces for

Binary Similarity. arXiv:2012.08680 [cs.CR] https://arxiv.org/abs/2012.08680

[50] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. 2015. Cross-architecture bug search in binary

executables. In 2015 IEEE Symposium on Security and Privacy. IEEE, 709ś724. https://doi.org/10.1109/SP.2015.49

[51] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. 2004. Dex: a semantic-graph diferencing tool for studying changes in

large code bases. In ICSM. https://doi.org/10.1109/ICSM.2004.1357803

[52] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the hidden power of compiler optimization on binary code

diference: An empirical study. In PLDI. https://doi.org/10.1145/3453483.3454035

[53] River Riddle. [n. d.]. Interprocedural IR Outlining For Code Size. https://llvm.org/devmtg/2017-10/slides/Riddle-Interprocedural%20IR%

20Outlining%20For%20Code%20Size.pdf.

[54] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and Edgar Weippl. 2016. Protecting software through

obfuscation: Can it keep pace with progress in code analysis? CSUR (2016). https://doi.org/10.1145/2886012

[55] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit

Object-oriented Programming: On the Diiculty of Preventing Code Reuse Attacks in C++ Applications. In S&P. https://doi.org/10.

1109/SP.2015.51

[56] Noam Shalev and Nimrod Partush. 2018. Binary Similarity Detection Using Machine Learning. In PLAS.

[57] Mechthild Stoer and Frank Wagner. 1997. A simple min-cut algorithm. JACM (1997). https://doi.org/10.1145/263867.263872

[58] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015. SoK: Deep packer inspection: A longitudinal study of

the complexity of run-time packers. In S&P. https://doi.org/10.1109/SP.2015.46

[59] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. 2022. JTrans: Jump-Aware

Transformer for Binary Code Similarity Detection. In ISSTA.

[60] Huaijin Wang, Shuai Wang, Dongpeng Xu, Xiangyu Zhang, and Xiao Liu. 2020. Generating efective software obfuscation sequences

with reinforcement learning. IEEE Transactions on Dependable and Secure Computing (2020). https://doi.org/10.1109/TDSC.2020.3041655

[61] Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code similarity analysis. In ASE. https://doi.org/10.1109/ASE.2017.

8115645

[62] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming android fragmentation: Characterizing and detecting compatibility issues for

android apps. In ASE. https://doi.org/10.1145/2970276.2970312

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/2508859.2516713
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/3238147.3238199
https://llvm.org/docs/BlockFrequencyTerminology.html
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1007/978-3-030-22038-9_15
https://doi.org/10.1145/242857.242869
https://doi.org/10.1109/SP.2015.48
https://arxiv.org/abs/2012.08680
https://arxiv.org/abs/2012.08680
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1109/ICSM.2004.1357803
https://doi.org/10.1145/3453483.3454035
https://llvm.org/devmtg/2017-10/slides/Riddle-Interprocedural%20IR%20Outlining%20For%20Code%20Size.pdf
https://llvm.org/devmtg/2017-10/slides/Riddle-Interprocedural%20IR%20Outlining%20For%20Code%20Size.pdf
https://doi.org/10.1145/2886012
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/263867.263872
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1109/TDSC.2020.3041655
https://doi.org/10.1109/ASE.2017.8115645
https://doi.org/10.1109/ASE.2017.8115645
https://doi.org/10.1145/2970276.2970312

26 • P. Zhang et al.

[63] xorpd. [n. d.]. FCatalog. https://www.xorpd.net/pages/fcatalog.html.

[64] Hui Xu, Yangfan Zhou, Yu Kang, Fengzhi Tu, and Michael Lyu. 2018. Manufacturing resilient bi-opaque predicates against symbolic

execution. In DSN. https://doi.org/10.1109/DSN.2018.00073

[65] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu

Zhang. 2023. Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis. In ISSTA.

[66] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu. 2021. Interpretation-enabled Software Reuse Detection Based on a

Multi-Level Birthmark Model. In ICSE. https://doi.org/10.1109/ICSE43902.2021.00084

[67] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accurate and scalable cross-architecture cross-os binary code

search with emulation. IEEE Transactions on Software Engineering 45, 11 (2018), 1125ś1149. https://doi.org/10.1109/TSE.2018.2827379

[68] Shouguo Yang, Chaopeng Dong, Yang Xiao, Yiran Cheng, Zhiqiang Shi, Zhi Li, and Limin Sun. 2023. Asteria-Pro: Enhancing Deep

Learning-based Binary Code Similarity Detection by Incorporating Domain Knowledge. ACM TOSEM (2023). https://doi.org/10.1145/

3604611

[69] Peihua Zhang, Chenggang Wu, Mingfan Peng, Kai Zeng, Ding Yu, Yuanming Lai, Yan Kang, Wei Wang, and Zhe Wang. 2023. Khaos:

The Impact of Inter-procedural Code Obfuscation on Binary Diing Techniques. In CGO.

[70] Peng Zhao and J.N. Amaral. 2005. Function outlining and partial inlining. In SBAC-PAD.

[71] Wenyu Zhu, Zhiyao Feng, Zihan Zhang, Jianjun Chen, Zhijian Ou, Min Yang, and Chao Zhang. 2023. Callee: Recovering Call Graphs for

Binaries with Transfer and Contrastive Learning. In S&P. https://doi.org/10.1109/SP46215.2023.10179482

[72] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. 2019. Neural Machine Translation Inspired Binary

Code Similarity Comparison beyond Function Pairs. In NDSS. https://doi.org/10.14722/ndss.2019.23492

[73] zynamics GmbH and Google LLC. 2022. BinDif Manual. http://www.zynamics.com/bindif/manual/index.html.

Received 7 November 2023; revised 13 July 2024; accepted 9 October 2024

ACM Trans. Arch. Code Optim.

https://doi.org/10.1109/DSN.2018.00073
https://doi.org/10.1109/ICSE43902.2021.00084
https://doi.org/10.1109/TSE.2018.2827379
https://doi.org/10.1145/3604611
https://doi.org/10.1145/3604611
https://doi.org/10.1109/SP46215.2023.10179482
https://doi.org/10.14722/ndss.2019.23492

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Binary Diffing
	2.2 Software Obfuscation
	2.3 Motivation

	3 Our Solution: KHaos
	3.1 Overview
	3.2 The Fission Primitive
	3.3 The Fusion Primitive
	3.4 The Hidden Primitive
	3.5 Combination

	4 KHaos Implementation
	5 Evaluation
	5.1 Performance Overhead after Obfuscation
	5.2 The Effectiveness against Binary Diffing
	5.3 The Ability to hide Vulnerable Code
	5.4 Comparison with BinTuner.
	5.5 The Statistics of KHaos Internals

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References

